Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 15 | Copyright
Atmos. Chem. Phys., 17, 9417-9433, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Aug 2017

Research article | 07 Aug 2017

Sea ice as a source of sea salt aerosol to Greenland ice cores: a model-based study

Rachael H. Rhodes1, Xin Yang2, Eric W. Wolff1, Joseph R. McConnell3, and Markus M. Frey2 Rachael H. Rhodes et al.
  • 1Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
  • 2British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK
  • 3Division of Hydrologic Sciences, Desert Research Institute, Reno, NV 89512, USA

Abstract. Growing evidence suggests that the sea ice surface is an important source of sea salt aerosol and this has significant implications for polar climate and atmospheric chemistry. It also suggests the potential to use ice core sea salt records as proxies for past sea ice extent. To explore this possibility in the Arctic region, we use a chemical transport model to track the emission, transport, and deposition of sea salt from both the open ocean and the sea ice, allowing us to assess the relative importance of each. Our results confirm the importance of sea ice sea salt (SISS) to the winter Arctic aerosol burden. For the first time, we explicitly simulate the sea salt concentrations of Greenland snow, achieving values within a factor of two of Greenland ice core records. Our simulations suggest that SISS contributes to the winter maxima in sea salt characteristic of ice cores across Greenland. However, a north–south gradient in the contribution of SISS relative to open-ocean sea salt (OOSS) exists across Greenland, with 50% of winter sea salt being SISS at northern sites such as NEEM (77°N), while only 10% of winter sea salt is SISS at southern locations such as ACT10C (66°N). Our model shows some skill at reproducing the inter-annual variability in sea salt concentrations for 1991–1999, particularly at Summit where up to 62% of the variability is explained. Future work will involve constraining what is driving this inter-annual variability and operating the model under different palaeoclimatic conditions.

Download & links
Publications Copernicus
Short summary
Sea salt aerosol comes from the open ocean or the sea ice surface. In the polar regions, this opens up the possibility of reconstructing sea ice history using sea salt recorded in ice cores. We use a chemical transport model to demonstrate that the sea ice source of aerosol is important in the Arctic. For the first time, we simulate realistic Greenland ice core sea salt in a process-based model. The importance of the sea ice source increases from south to north across the Greenland ice sheet.
Sea salt aerosol comes from the open ocean or the sea ice surface. In the polar regions, this...