Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 13 | Copyright
Atmos. Chem. Phys., 17, 8599-8618, 2017
https://doi.org/10.5194/acp-17-8599-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Jul 2017

Research article | 14 Jul 2017

Lidar ratios of stratospheric volcanic ash and sulfate aerosols retrieved from CALIOP measurements

Andrew T. Prata1, Stuart A. Young2, Steven T. Siems1, and Michael J. Manton1 Andrew T. Prata et al.
  • 1School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800, Australia
  • 2CSIRO Oceans and Atmosphere, Aspendale, Victoria 3195, Australia

Abstract. We apply a two-way transmittance constraint to nighttime CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations of volcanic aerosol layers to retrieve estimates of the particulate lidar ratio (Sp) at 532nm. This technique is applied to three volcanic eruption case studies that were found to have injected aerosols directly into the stratosphere. Numerous lidar observations permitted characterization of the optical and geometric properties of the volcanic aerosol layers over a time period of 1–2 weeks. For the volcanic ash-rich layers produced by the Puyehue-Cordón Caulle eruption (June 2011), we obtain mean and median particulate lidar ratios of 69±13sr and 67sr, respectively. For the sulfate-rich aerosol layers produced by Kasatochi (August 2008) and Sarychev Peak (June 2009), the means of the retrieved lidar ratios were 66±19sr (median 60sr) and 63 ± 14sr (median 59sr), respectively. The 532nm layer-integrated particulate depolarization ratios (δp) observed for the Puyehue layers (δp = 0.33±0.03) were much larger than those found for the volcanic aerosol layers produced by the Kasatochi (δp = 0.09±0.03) and Sarychev (δp = 0.05 ± 0.04) eruptions. However, for the Sarychev layers we observe an exponential decay (e-folding time of 3.6 days) in δp with time from 0.27 to 0.03. Similar decreases in the layer-integrated attenuated colour ratios with time were observed for the Sarychev case. In general, the Puyehue layers exhibited larger colour ratios (χ′ = 0.53±0.07) than what was observed for the Kasatochi (χ′ = 0.35±0.07) and Sarychev (χ′ = 0.32±0.07) layers, indicating that the Puyehue layers were generally composed of larger particles. These observations are particularly relevant to the new stratospheric aerosol subtyping classification scheme, which has been incorporated into version 4 of the level 2 CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data products.

Download & links
Publications Copernicus
Download
Short summary
We have studied the optical properties of ash-rich and sulfate-rich volcanic aerosols by analysing satellite observations of three different volcanic eruptions. Our results indicate that ash particles have distinctive optical properties when compared to sulfates. We expect our results will improve space-borne lidar detection of volcanic aerosols and provide new insight into their interaction with the atmosphere and solar radiation.
We have studied the optical properties of ash-rich and sulfate-rich volcanic aerosols by...
Citation
Share