Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 17, 8577-8598, 2017
https://doi.org/10.5194/acp-17-8577-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
14 Jul 2017
Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter–spring
Keiichiro Hara1, Sumito Matoba2, Motohiro Hirabayashi3, and Tetsuhide Yamasaki4 1Department of Earth System Science, Faculty of Science, Fukuoka University, Fukoka, Japan
2Institute of Low Temperature Science, Hokkaido University, Hokkaido, Japan
3National Institute of Polar Research, Tokyo, Japan
4Avangnaq, Osaka, Japan
Abstract. Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl, Mg2+, K+, Ca2+, Br, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14–3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl, Br, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42−. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

Citation: Hara, K., Matoba, S., Hirabayashi, M., and Yamasaki, T.: Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter–spring, Atmos. Chem. Phys., 17, 8577-8598, https://doi.org/10.5194/acp-17-8577-2017, 2017.
Publications Copernicus
Download
Short summary
To obtain knowledge about sea-salt chemistry in polar regions, we made simultaneous measurements and sampling of aerosols, frost flowers, and brine around northwestern Greenland during winter–spring. Our results show sea-salt enrichment in frost flowers and snow. Also, the fractionated sea-salt particles were suspended in the atmosphere over sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.
To obtain knowledge about sea-salt chemistry in polar regions, we made simultaneous measurements...
Share