Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 17, issue 13
Atmos. Chem. Phys., 17, 8429–8452, 2017
https://doi.org/10.5194/acp-17-8429-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 8429–8452, 2017
https://doi.org/10.5194/acp-17-8429-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Jul 2017

Research article | 11 Jul 2017

Global O3–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions

Hyun-Deok Choi et al.
Viewed  
Total article views: 1,425 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
937 423 65 1,425 30 71
  • HTML: 937
  • PDF: 423
  • XML: 65
  • Total: 1,425
  • BibTeX: 30
  • EndNote: 71
Views and downloads (calculated since 17 Jan 2017)
Cumulative views and downloads (calculated since 17 Jan 2017)
Viewed (geographical distribution)  
Total article views: 1,432 (including HTML, PDF, and XML) Thereof 1,421 with geography defined and 11 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 21 Sep 2019
Publications Copernicus
Download
Short summary
We evaluate global ozone–carbon monoxide (O3–CO) correlations in a chemistry and transport model during July–August with TES-Aura satellite observations and examine the sensitivity of model simulations to input meteorological data and emissions. Results show that O3–CO correlations may be used effectively to constrain the sources of regional tropospheric O3 in global 3-D models, especially for those regions where convective transport of pollution plays an important role.
We evaluate global ozone–carbon monoxide (O3–CO) correlations in a chemistry and transport model...
Citation