Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 12 | Copyright
Atmos. Chem. Phys., 17, 7757-7773, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Jun 2017

Research article | 28 Jun 2017

Secondary inorganic aerosols in Europe: sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate

Sebnem Aksoyoglu1, Giancarlo Ciarelli1,a, Imad El-Haddad1, Urs Baltensperger1, and André S. H. Prévôt1 Sebnem Aksoyoglu et al.
  • 1Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
  • anow at: Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, France

Abstract. Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns, February–March 2009 and June 2006, which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations, leading to significant changes, especially in the formation of ammonium nitrate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two), while particulate inorganic nitrate concentrations decreased by up to 35%, leading to a better agreement between the model results and measurements. Sulfate concentrations decreased as well; the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe, indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7; see Table 1 for a description of the categories), whereas combustion in energy and transformation industries (SNAP1) was the most important contributor to sulfate particulate mass. Emissions from international shipping were also found to be very important for both nitrate and sulfate formation in Europe. In addition, we also examined contributions from the geographical source regions to SIA concentrations in the most densely populated region of Switzerland, the Swiss Plateau.

Download & links
Publications Copernicus
Short summary
Sources of inorganic aerosols in Europe were investigated using a regional air quality model. Results of this study suggested that biogenic volatile organic coumpounds emitted from vegetation had a significant effect on inorganic aerosols, especially on ammonium nitrate concentrations. Sensitivity analyses showed that it is mainly terpene reactions with nitrate radical at night that lead to a decrease in ammonium nitrate.
Sources of inorganic aerosols in Europe were investigated using a regional air quality model....