Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 17, 7733-7756, 2017
https://doi.org/10.5194/acp-17-7733-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
28 Jun 2017
Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China
Yu Zhao1,2, Pan Mao1, Yaduan Zhou1, Yang Yang1, Jie Zhang2,3, Shekou Wang3, Yanping Dong4, Fangjian Xie5, Yiyong Yu4, and Wenqing Li5 1State Key Laboratory of Pollution Control & Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
2Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Jiangsu 210044, China
3Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu 210036, China
4Nanjing Environmental Monitoring Central Station, 175 Huju Rd., Nanjing, Jiangsu 210013, China
5Nanjing Academy of Environmental Protection Science, 175 Huju Rd., Nanjing, Jiangsu 210013, China
Abstract. Non-methane volatile organic compounds (NMVOCs) are the key precursors of ozone (O3) and secondary organic aerosol (SOA) formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography – mass spectrometry system (GC-MS). Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs) were the most important species, accounting for 25.9–29.9, 20.8–23.2 and 18.2–21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions vary slightly through the years, and the result for 2014 was −41 to +93 %, expressed as 95 % confidence intervals (CI). Reduced uncertainty was achieved compared to previous national and regional inventories, attributed partly to the detailed classification of emission sources and to the use of information at plant level in this work. Discrepancies in emission estimation were explored for the chemical and refinery sectors with various data sources and methods. Compared with the Multi-resolution Emission Inventory for China (MEIC), the spatial distribution of emissions in this work were more influenced by the locations of large point sources, and smaller emissions were found in urban area for developed cities in southern Jiangsu. In addition, discrepancies were found between this work and MEIC in the speciation of NMVOC emissions under the atmospheric chemistry mechanisms CB05 and SAPRC99. The difference in species OLE1 resulted mainly from the updated source profile of building paint use and the differences in other species from the varied sector contributions to emissions in the two inventories. The Community Multi-scale Air Quality (CMAQ) model simulation was applied to evaluate the two inventories, and better performance (indicated by daily 1 h maximum O3 concentrations in Nanjing) were found for January, April and October 2012 when the provincial inventory was used.

Citation: Zhao, Y., Mao, P., Zhou, Y., Yang, Y., Zhang, J., Wang, S., Dong, Y., Xie, F., Yu, Y., and Li, W.: Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China, Atmos. Chem. Phys., 17, 7733-7756, https://doi.org/10.5194/acp-17-7733-2017, 2017.
Publications Copernicus
Download
Short summary
We improve and evaluate an NMVOC emission inventory for Jiangsu. Field measurements were conducted to obtain NMVOC source profiles of typical chemical engineering processes. The emission inventory of NMVOCs with chemistry profiles was developed for 2005–2014, and the uncertainties were quantified. The discrepancies between various inventories in source profiles and spatial patterns were evaluated. A chemistry transport model was applied to test the improvement of the provincial NMVOC inventory.
We improve and evaluate an NMVOC emission inventory for Jiangsu. Field measurements were...
Share