Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 10 | Copyright
Atmos. Chem. Phys., 17, 6477-6492, 2017
https://doi.org/10.5194/acp-17-6477-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 May 2017

Research article | 31 May 2017

Surface ozone in the Southern Hemisphere: 20 years of data from a site with a unique setting in El Tololo, Chile

Julien G. Anet1,2, Martin Steinbacher1, Laura Gallardo3,4, Patricio A. Velásquez Álvarez5,6, Lukas Emmenegger1, and Brigitte Buchmann1 Julien G. Anet et al.
  • 1Laboratory for Air Pollution/Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology Empa, Duebendorf, Switzerland
  • 2WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
  • 3Departamento de Geofísica de la Universidad de Chile, Blanco Encalada 2002, piso 4, Santiago, Chile
  • 4Center for Climate and Resilience Research (CR2), Blanco Encalada 2002, Santiago, Chile
  • 5Dirección Meteorológica de Chile, Av. Portales 3450, Estación Central, Santiago, Chile
  • 6Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland

Abstract. The knowledge of surface ozone mole fractions and their global distribution is of utmost importance due to the impact of ozone on human health and ecosystems and the central role of ozone in controlling the oxidation capacity of the troposphere. The availability of long-term ozone records is far better in the Northern than in the Southern Hemisphere, and recent analyses of the seven accessible records in the Southern Hemisphere have shown inconclusive trends. Since late 1995, surface ozone is measured in situ at "El Tololo", a high-altitude (2200ma.s.l.) and pristine station in Chile (30°S, 71°W). The dataset has been recently fully quality controlled and reprocessed. This study presents the observed ozone trends and annual cycles and identifies key processes driving these patterns. From 1995 to 2010, an overall positive trend of  ∼ 0.7ppb decade−1 is found. Strongest trends per season are observed in March and April. Highest mole fractions are observed in late spring (October) and show a strong correlation with ozone transported from the stratosphere down into the troposphere, as simulated with a model. Over the 20 years of observations, the springtime ozone maximum has shifted to earlier times in the year, which, again, is strongly correlated with a temporal shift in the occurrence of the maximum of simulated stratospheric ozone transport at the site. We conclude that background ozone at El Tololo is mainly driven by stratospheric intrusions rather than photochemical production from anthropogenic and biogenic precursors. The major footprint of the sampled air masses is located over the Pacific Ocean. Therefore, due to the negligible influence of local processes, the ozone record also allows studying the influence of El Niño and La Niña episodes on background ozone levels in South America. In agreement with previous studies, we find that, during La Niña conditions, ozone mole fractions reach higher levels than during El Niño conditions.

Download & links
Publications Copernicus
Download
Short summary
There are less long-term surface ozone measurements on the Southern than on the Northern Hemisphere, which makes it difficult to thoroughly understand global ozone chemistry. We have analyzed a new, 20-year-long ozone dataset measured at 2200 m asl at El Tololo, Chile, and show that the annual cycle of ozone is mainly driven by ozone transport from the stratosphere to the troposphere. As well, we illustrate that the timing of the annual maximum is regressing to earlier in the year.
There are less long-term surface ozone measurements on the Southern than on the Northern...
Citation
Share