Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 10 | Copyright
Atmos. Chem. Phys., 17, 6305-6322, 2017
https://doi.org/10.5194/acp-17-6305-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 May 2017

Research article | 23 May 2017

Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect

Anahita Amiri-Farahani1, Robert J. Allen1, David Neubauer2, and Ulrike Lohmann2 Anahita Amiri-Farahani et al.
  • 1University of California Riverside, Department of Earth Sciences, Riverside, USA
  • 2ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland

Abstract. One component of aerosol–cloud interactions (ACI) involves dust and marine stratocumulus clouds (MSc). Few observational studies have focused on dust–MSc interactions, and thus this effect remains poorly quantified. We use observations from multiple sensors in the NASA A-Train satellite constellation from 2004 to 2012 to obtain estimates of the aerosol–cloud radiative effect, including its uncertainty, of dust aerosol influencing Atlantic MSc off the coast of northern Africa between 45°W and 15°E and between 0 and 35°N. To calculate the aerosol–cloud radiative effect, we use two methods following Quaas et al. (2008) (Method 1) and Chen et al. (2014) (Method 2). These two methods yield similar results of −1.5±1.4 and −1.5±1.6Wm−2, respectively, for the annual mean aerosol–cloud radiative effect. Thus, Saharan dust modifies MSc in a way that acts to cool the planet. There is a strong seasonal variation, with the aerosol–cloud radiative effect switching from significantly negative during the boreal summer to weakly positive during boreal winter. Method 1 (Method 2) yields −3.8±2.5 (−4.3±4.1) during summer and 1±2.9 (0.6±1)Wm−2 during winter. In Method 1, the aerosol–cloud radiative effect can be decomposed into two terms, one representing the first aerosol indirect effect and the second representing the combination of the second aerosol indirect effect and the semidirect effect (i.e., changes in liquid water path and cloud fraction in response to changes in absorbing aerosols and local heating). The first aerosol indirect effect is relatively small, varying from −0.7±0.6 in summer to 0.1±0.5Wm−2 in winter. The second term, however, dominates the overall radiative effect, varying from −3.2±2.5 in summer to 0.9±2.9Wm−2 during winter. Studies show that the semidirect effect can result in a negative (i.e., absorbing aerosol lies above low clouds like MSc) or positive (i.e., absorbing aerosol lies within low clouds) aerosol–cloud radiative effect. The semipermanent MSc are low and confined within the boundary layer. CALIPSO shows that 61.8±12.6% of Saharan dust resides above North Atlantic MSc during summer for our study area. This is consistent with a relatively weak first aerosol indirect effect and also suggests the second aerosol indirect effect plus semidirect effect (the second term in Method 1) is dominated by the semidirect effect. In contrast, the percentage of Saharan dust above North Atlantic MSc in winter is 11.9±10.9%, which is much lower than in summer. CALIPSO also shows that 88.3±8.5% of dust resides below 2.2km the winter average of MSc top height. During summer, however, there are two peaks, with 35.6±13% below 1.9km (summer average of MSc top height) and 44.4±9.2% between 2 and 4km. Because the aerosol–cloud radiative effect is positive during winter, and is also dominated by the second term, this again supports the importance of the semidirect effect. We conclude that Saharan dust–MSc interactions off the coast of northern Africa are likely dominated by the semidirect effect.

Download & links
Publications Copernicus
Download
Short summary
We use observations from 2004 to 2012 to obtain estimates of the aerosol–cloud radiative effect, including its uncertainty, for dust aerosol influencing Atlantic marine stratocumulus clouds (MSc) off the coast of north Africa. Saharan dust modifies MSc in a way that acts to cool the planet. There is a strong seasonal variation, with the aerosol–cloud radiative effect switching from significantly negative during the boreal summer to weakly positive during boreal winter.
We use observations from 2004 to 2012 to obtain estimates of the aerosol–cloud radiative effect,...
Citation
Share