Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 9 | Copyright

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 17, 6091-6111, 2017
https://doi.org/10.5194/acp-17-6091-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 May 2017

Research article | 16 May 2017

Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations

Klaus-D. Gottschaldt1, Hans Schlager1, Robert Baumann1, Heiko Bozem2, Veronika Eyring1, Peter Hoor2, Patrick Jöckel1, Tina Jurkat1, Christiane Voigt1,2, Andreas Zahn3, and Helmut Ziereis1 Klaus-D. Gottschaldt et al.
  • 1Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
  • 2Johannes Gutenberg-Universität, Institut für Physik der Atmosphäre, Mainz, Germany
  • 3Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Karlsruhe, Germany

Abstract. We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air.

Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy.

A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the anticyclone at its eastern flank. Back-trajectories and increased HCl mixing ratios indicate that the entrained air originates in the stratospherically influenced TL. Photochemical ageing of air masses in the ASMA additionally increases O3 in originally O3-poor, but CO-rich air. Simulated monthly mean trace gas distributions show decreased O3 in the ASMA centre only at the 100hPa level in July and August, but at lower altitudes and in September the ASMA is dominated by increased O3. The combination of entrainment from the tropopause region, photochemistry and dynamical instabilities can explain the in situ observations, and might have a larger impact on the highly variable trace gas composition of the anticyclone than previously thought.

Download & links
Publications Copernicus
Special issue
Download
Short summary
We present upper-tropospheric trace gas measurements in the Asian summer monsoon anticyclone, obtained with the HALO research aircraft in September 2012. The anticyclone is one of the largest atmospheric features on Earth, but many aspects of it are not well understood. With the help of model simulations we find that entrainments from the tropopause region and the lower troposphere, combined with photochemistry and dynamical instabilities, can explain the observations.
We present upper-tropospheric trace gas measurements in the Asian summer monsoon anticyclone,...
Citation
Share