Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 9
Atmos. Chem. Phys., 17, 5973-5989, 2017
https://doi.org/10.5194/acp-17-5973-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 5973-5989, 2017
https://doi.org/10.5194/acp-17-5973-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 May 2017

Research article | 16 May 2017

Cloud vertical distribution from combined surface and space radar–lidar observations at two Arctic atmospheric observatories

Yinghui Liu et al.
Related authors  
Arctic climate: changes in sea ice extent outweigh changes in snow cover
Aaron Letterly, Jeffrey Key, and Yinghui Liu
The Cryosphere, 12, 3373-3382, https://doi.org/10.5194/tc-12-3373-2018,https://doi.org/10.5194/tc-12-3373-2018, 2018
Short summary
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Yulan Hong, Jonathan Jiang, Eric Fetzer, Graeme Stephens, Yi-Hui Wang, Jia-yuh Yu, and Yinghui Liu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-195,https://doi.org/10.5194/tc-2018-195, 2018
Manuscript under review for TC
Short summary
Related subject area  
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Building a cloud in the southeast Atlantic: understanding low-cloud controls based on satellite observations with machine learning
Julia Fuchs, Jan Cermak, and Hendrik Andersen
Atmos. Chem. Phys., 18, 16537-16552, https://doi.org/10.5194/acp-18-16537-2018,https://doi.org/10.5194/acp-18-16537-2018, 2018
Short summary
A satellite-based estimate of combustion aerosol cloud microphysical effects over the Arctic Ocean
Lauren M. Zamora, Ralph A. Kahn, Klaus B. Huebert, Andreas Stohl, and Sabine Eckhardt
Atmos. Chem. Phys., 18, 14949-14964, https://doi.org/10.5194/acp-18-14949-2018,https://doi.org/10.5194/acp-18-14949-2018, 2018
Short summary
Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation
Odran Sourdeval, Edward Gryspeerdt, Martina Krämer, Tom Goren, Julien Delanoë, Armin Afchine, Friederike Hemmer, and Johannes Quaas
Atmos. Chem. Phys., 18, 14327-14350, https://doi.org/10.5194/acp-18-14327-2018,https://doi.org/10.5194/acp-18-14327-2018, 2018
Short summary
Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 2: Controls on the ice crystal number concentration
Edward Gryspeerdt, Odran Sourdeval, Johannes Quaas, Julien Delanoë, Martina Krämer, and Philipp Kühne
Atmos. Chem. Phys., 18, 14351-14370, https://doi.org/10.5194/acp-18-14351-2018,https://doi.org/10.5194/acp-18-14351-2018, 2018
Short summary
Evaluating the diurnal cycle of South Atlantic stratocumulus clouds as observed by MSG SEVIRI
Chellappan Seethala, Jan Fokke Meirink, Ákos Horváth, Ralf Bennartz, and Rob Roebeling
Atmos. Chem. Phys., 18, 13283-13304, https://doi.org/10.5194/acp-18-13283-2018,https://doi.org/10.5194/acp-18-13283-2018, 2018
Short summary
Cited articles  
Blanchard, Y., Pelon, J., Eloranta, E. W., Moran, K. P., Delanoë, J., and Sèze, G.: A synergistic analysis of cloud cover and vertical distribution from A-Train and ground-based sensors over the high Arctic station EUREKA from 2006 to 2010, J. Appl. Meteorol. Climatol., 53, 2553–2570, 2014.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhan, X. Y.: Clouds and aerosols, Climate Change 2013: The Physical Science Basis, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, 571–657, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Devasthale, A., Tjernstrom, M., Karlsson, K.-G., Thomas, M. A., Jones, C., Sedlar, J., and Omar, A. H.: The vertical distribution of thin features over the Arctic analysed from CALIPSO observations, Tellus B, 63, 77–85, https://doi.org/10.1111/j.1600-0889.2010.00516.x, 2011.
Devasthale, A., Tjernström, M., Caian, M., Thomas, M. A., Kahn, B. H., and Fetzer, E. J.: Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites, Atmos. Chem. Phys., 12, 10535–10544, https://doi.org/10.5194/acp-12-10535-2012, 2012.
Francis, J. A. and Vavrus, S. J.: Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000, 2012.
Publications Copernicus
Download
Short summary
Detailed and accurate vertical distributions of cloud properties are essential to accurately calculate the surface radiative flux and to depict the mean climate state, and such information is more desirable in the Arctic due to its recent rapid changes and the challenging observation conditions. This study presents a feasible way to provide such information by blending cloud observations from surface and space-based instruments with the understanding of their respective strength and limitations.
Detailed and accurate vertical distributions of cloud properties are essential to accurately...
Citation
Share