Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 9 | Copyright
Atmos. Chem. Phys., 17, 5751-5774, 2017
https://doi.org/10.5194/acp-17-5751-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 May 2017

Research article | 09 May 2017

Satellite-derived methane hotspot emission estimates using a fast data-driven method

Michael Buchwitz et al.
Related authors
Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016
Michael Buchwitz, Maximilian Reuter, Oliver Schneising, Stefan Noël, Bettina Gier, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Rob G. Detmers, Otto P. Hasekamp, Ilse Aben, André Butz, Akihiko Kuze, Hiroshi Suto, Yukio Yoshida, David Crosp, and Christopher O'Dell
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-158,https://doi.org/10.5194/acp-2018-158, 2018
Revised manuscript under review for ACP
Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions
Thomas Krings, Bruno Neininger, Konstantin Gerilowski, Sven Krautwurst, Michael Buchwitz, John P. Burrows, Carsten Lindemann, Thomas Ruhtz, Dirk Schüttemeyer, and Heinrich Bovensmann
Atmos. Meas. Tech., 11, 721-739, https://doi.org/10.5194/amt-11-721-2018,https://doi.org/10.5194/amt-11-721-2018, 2018
The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities
Grégoire Broquet, François-Marie Bréon, Emmanuel Renault, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Frédéric Chevallier, Lin Wu, and Philippe Ciais
Atmos. Meas. Tech., 11, 681-708, https://doi.org/10.5194/amt-11-681-2018,https://doi.org/10.5194/amt-11-681-2018, 2018
Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements
Sven Krautwurst, Konstantin Gerilowski, Haflidi H. Jonsson, David R. Thompson, Richard W. Kolyer, Laura T. Iraci, Andrew K. Thorpe, Markus Horstjann, Michael Eastwood, Ira Leifer, Samuel A. Vigil, Thomas Krings, Jakob Borchardt, Michael Buchwitz, Matthew M. Fladeland, John P. Burrows, and Heinrich Bovensmann
Atmos. Meas. Tech., 10, 3429-3452, https://doi.org/10.5194/amt-10-3429-2017,https://doi.org/10.5194/amt-10-3429-2017, 2017
Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems
Marko Scholze, Michael Buchwitz, Wouter Dorigo, Luis Guanter, and Shaun Quegan
Biogeosciences, 14, 3401-3429, https://doi.org/10.5194/bg-14-3401-2017,https://doi.org/10.5194/bg-14-3401-2017, 2017
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Characterization of trace gas emissions at an intermediate port
Aldona Wiacek, Li Li, Keane Tobin, and Morgan Mitchell
Atmos. Chem. Phys., 18, 13787-13812, https://doi.org/10.5194/acp-18-13787-2018,https://doi.org/10.5194/acp-18-13787-2018, 2018
Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellites data
Wei Tan, Cheng Liu, Shanshan Wang, Chengzhi Xing, Wenjing Su, Chengxin Zhang, Congzi Xia, Haoran Liu, Zhaonan Cai, and Jianguo Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-578,https://doi.org/10.5194/acp-2018-578, 2018
Revised manuscript accepted for ACP
Transboundary ozone pollution across East Asia: daily evolution and photochemical production analysed by IASI + GOME2 multispectral satellite observations and models
Juan Cuesta, Yugo Kanaya, Masayuki Takigawa, Gaëlle Dufour, Maxim Eremenko, Gilles Foret, Kazuyuki Miyazaki, and Matthias Beekmann
Atmos. Chem. Phys., 18, 9499-9525, https://doi.org/10.5194/acp-18-9499-2018,https://doi.org/10.5194/acp-18-9499-2018, 2018
Influence of the wintertime North Atlantic Oscillation on European tropospheric composition: an observational and modelling study
Richard J. Pope, Martyn P. Chipperfield, Stephen R. Arnold, Norbert Glatthor, Wuhu Feng, Sandip S. Dhomse, Brian J. Kerridge, Barry G. Latter, and Richard Siddans
Atmos. Chem. Phys., 18, 8389-8408, https://doi.org/10.5194/acp-18-8389-2018,https://doi.org/10.5194/acp-18-8389-2018, 2018
Impact of high-resolution a priori profiles on satellite-based formaldehyde retrievals
Si-Wan Kim, Vijay Natraj, Seoyoung Lee, Hyeong-Ahn Kwon, Rokjin Park, Joost de Gouw, Gregory Frost, Jhoon Kim, Jochen Stutz, Michael Trainer, Catalina Tsai, and Carsten Warneke
Atmos. Chem. Phys., 18, 7639-7655, https://doi.org/10.5194/acp-18-7639-2018,https://doi.org/10.5194/acp-18-7639-2018, 2018
Cited articles
Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy, S. C., and Kort, E. A.: Inverse modeling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, https://doi.org/10.5194/acp-15-113-2015, 2015.
Bao, J.-W., Michelson, S. A., Persson, P. O. G., Djalalova, I. V., and Wilczak, J. M.: Observed and WRF-Simulated Low-Level Winds in a High-Ozone Episode during the Central California Ozone Study, J. Appl. Meteorol. Climatol., 47, 2372–2394, https://doi.org/10.1175/2008JAMC1822.1, 2008.
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., Platt, U., Kaplan, J. O., Körner, S., Heimann, M., Dlugokencky, E., and Goede, A. P. H.: Satellite chartography of atmospheric methane from SCIAMACHY onboard ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 112, D02304, https://doi.org/10.1029/2006JD007268, 2007.
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Dentener, F., Dlugokencky, E. J., Miller, J. B., Gatti, L. V., Engel, A., and Levin, I.: Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals, J. Geophys. Res., 114, D22301, https://doi.org/10.1029/2009JD01228, 2009.
Bergamaschi, P., Houweling, H., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res., 118, 7350–7369, https://doi.org/10.1002/jrgd.5048, 2013.
Publications Copernicus
Download
Short summary
Methane is an important greenhouse gas and increasing atmospheric concentrations result in global warming. We present a simple method to derive annual methane emission estimates of methane hotspot areas from satellite data. We present results for four source areas. We found that our estimates are in good agreement with other studies/data sets for the Four Corners region in the USA and for Azerbaijan but we also found higher emissions for parts of California and Turkmenistan.
Methane is an important greenhouse gas and increasing atmospheric concentrations result in...
Citation
Share