Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 17, issue 7
Atmos. Chem. Phys., 17, 4781–4797, 2017
https://doi.org/10.5194/acp-17-4781-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 4781–4797, 2017
https://doi.org/10.5194/acp-17-4781-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Apr 2017

Research article | 12 Apr 2017

Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4 : XCO2 retrievals, 2010–2014

Liang Feng et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Liang Feng on behalf of the Authors (03 Feb 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (09 Feb 2017) by Rolf Müller
RR by Anonymous Referee #1 (26 Feb 2017)
RR by Anonymous Referee #2 (28 Feb 2017)
ED: Publish subject to technical corrections (28 Feb 2017) by Rolf Müller
AR by Liang Feng on behalf of the Authors (08 Mar 2017)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4:XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. Our results show that assimilation of GOSAT data significantly reduced the posterior uncertainty and changed the a priori spatial distribution of CH4 emissions.
We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble...
Citation