Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 6 | Copyright
Atmos. Chem. Phys., 17, 4115-4130, 2017
https://doi.org/10.5194/acp-17-4115-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Mar 2017

Research article | 27 Mar 2017

Day and night-time formation of organic nitrates at a forested mountain site in south-west Germany

Nicolas Sobanski, Jim Thieser, Jan Schuladen, Carina Sauvage, Wei Song, Jonathan Williams, Jos Lelieveld, and John N. Crowley Nicolas Sobanski et al.
  • Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Mainz, Germany

Abstract. We report in situ measurements of total peroxy nitrates (ΣPNs) and total alkyl nitrates (ΣANs) in a forested–urban location at the top of the Kleiner Feldberg mountain in south-west Germany. The data, obtained using thermal dissociation cavity ring-down spectroscopy (TD-CRDS) in August–September 2011 (PARADE campaign) and July 2015 (NOTOMO campaign), represent the first detailed study of ΣPNs and ΣANs over continental Europe. We find that a significant fraction of NOx (up to 75%) is sequestered as organics nitrates at this site. Furthermore, we also show that the night-time production of alkyl nitrates by reaction of NO3 with biogenic hydrocarbons is comparable to that from daytime OH-initiated oxidation pathways. The ΣANsozone ratio obtained during PARADE was used to derive an approximate average yield of organic nitrates at noon from the OH initiated oxidation of volatile organic compounds (VOCs) of  ∼ 7% at this site in 2011, which is comparable with that obtained from an analysis of VOCs measured during the campaign. A much lower AN yield,  < 2%, was observed in 2015, which may result from sampling air with different average air mass ages and thus different degrees of breakdown of assumptions used to derive the branching ratio, but it may also reflect a seasonal change in the VOC mixture at the site.

Download & links
Publications Copernicus
Download
Short summary
We investigated the formation of gas-phase organic nitrates at a forested semi-urban site. This work constitutes the first detailed analysis of the sum of organic nitrate mixing ratios measured by thermal dissociation cavity ring-down spectroscopy in continental Europe. Day (OH-initiated) and night-time (NO3-initiated) production of alkyl nitrates proceed at similar rates.
We investigated the formation of gas-phase organic nitrates at a forested semi-urban site. This...
Citation
Share