Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 5 | Copyright
Atmos. Chem. Phys., 17, 3749-3767, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Mar 2017

Research article | 17 Mar 2017

An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate–chemistry model

Ashok K. Luhar, Ian E. Galbally, Matthew T. Woodhouse, and Marcus Thatcher Ashok K. Luhar et al.
  • CSIRO Oceans and Atmosphere, Aspendale, 3195, Australia

Abstract. Schemes used to parameterise ozone dry deposition velocity at the oceanic surface mainly differ in terms of how the dominant term of surface resistance is parameterised. We examine three such schemes and test them in a global climate–chemistry model that incorporates meteorological nudging and monthly-varying reactive-gas emissions. The default scheme invokes the commonly used assumption that the water surface resistance is constant. The other two schemes, named the one-layer and two-layer reactivity schemes, include the simultaneous influence on the water surface resistance of ozone solubility in water, waterside molecular diffusion and turbulent transfer, and a first-order chemical reaction of ozone with dissolved iodide. Unlike the one-layer scheme, the two-layer scheme can indirectly control the degree of interaction between chemical reaction and turbulent transfer through the specification of a surface reactive layer thickness. A comparison is made of the modelled deposition velocity dependencies on sea surface temperature (SST) and wind speed with recently reported cruise-based observations. The default scheme overestimates the observed deposition velocities by a factor of 2–4 when the chemical reaction is slow (e.g. under colder SSTs in the Southern Ocean). The default scheme has almost no temperature, wind speed, or latitudinal variations in contrast with the observations. The one-layer scheme provides noticeably better variations, but it overestimates deposition velocity by a factor of 2–3 due to an enhancement of the interaction between chemical reaction and turbulent transfer. The two-layer scheme with a surface reactive layer thickness specification of 2.5µm, which is approximately equal to the reaction-diffusive length scale of the ozone–iodide reaction, is able to simulate the field measurements most closely with respect to absolute values as well as SST and wind-speed dependence. The annual global oceanic deposition of ozone determined using this scheme is approximately half of the original oceanic deposition obtained using the default scheme, and it corresponds to a 10% decrease in the original estimate of the total global ozone deposition. The previously reported modelled estimate of oceanic deposition is roughly one-third of total deposition and with this new parameterisation it is reduced to 12% of the modelled total global ozone deposition. Deposition parameterisation influences the predicted atmospheric ozone mixing ratios, especially in the Southern Hemisphere. For the latitudes 45–70°S, the two-layer scheme improves the prediction of ozone observed at an altitude of 1km by 7% and that within the altitude range 1–6km by 5% compared to the default scheme.

Download & links
Publications Copernicus
Short summary
Dry deposition of tropospheric ozone relates to its destruction at the Earth’s surface. An improved model scheme for such deposition to the ocean is formulated backed up by field data. It results in the oceanic dry deposition of ozone to be 12 % of the global total, which is much lower than the current model estimate of about 30 %. This result has implications for modelling global tropospheric ozone budget and its radiative forcing, and ozone mixing ratios, especially in the Southern Hemisphere.
Dry deposition of tropospheric ozone relates to its destruction at the Earth’s surface. An...