Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 17, issue 5
Atmos. Chem. Phys., 17, 3573–3604, 2017
https://doi.org/10.5194/acp-17-3573-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 3573–3604, 2017
https://doi.org/10.5194/acp-17-3573-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Mar 2017

Research article | 14 Mar 2017

HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009

Bernd Funke et al.

Viewed

Total article views: 1,661 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,058 547 56 1,661 52 50
  • HTML: 1,058
  • PDF: 547
  • XML: 56
  • Total: 1,661
  • BibTeX: 52
  • EndNote: 50
Views and downloads (calculated since 09 Dec 2016)
Cumulative views and downloads (calculated since 09 Dec 2016)

Viewed (geographical distribution)

Total article views: 1,653 (including HTML, PDF, and XML) Thereof 1,645 with geography defined and 8 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 11 Jul 2020
Publications Copernicus
Download
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
Simulations from eight atmospheric models have been compared to tracer and temperature...
Citation