Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 17, 3553-3572, 2017
https://doi.org/10.5194/acp-17-3553-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
14 Mar 2017
Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion
Rona L. Thompson1, Motoki Sasakawa2, Toshinobu Machida2, Tuula Aalto3, Doug Worthy4, Jost V. Lavric5,6, Cathrine Lund Myhre1, and Andreas Stohl1 1NILU – Norwegian Institute for Air Research, Kjeller, Norway
2National Institute for Environmental Studies, Tsukuba, Japan
3Finnish Meteorological Institute (FMI), Helsinki, Finland
4Environment Canada, Toronto, Canada
5Max Planck Institute for Biogeochemistry, Jena, Germany
6Integrated Carbon Observation System (ICOS), ERIC Head Office, Helsinki, Finland
Abstract. We present methane (CH4) flux estimates for 2005 to 2013 from a Bayesian inversion focusing on the high northern latitudes (north of 50° N). Our inversion is based on atmospheric transport modelled by the Lagrangian particle dispersion model FLEXPART and CH4 observations from 17 in situ and five discrete flask-sampling sites distributed over northern North America and Eurasia. CH4 fluxes are determined at monthly temporal resolution and on a variable grid with maximum resolution of 1°  ×  1°. Our inversion finds a CH4 source from the high northern latitudes of 82 to 84 Tg yr−1, constituting ∼ 15 % of the global total, compared to 64 to 68 Tg yr−1 (∼ 12 %) in the prior estimates. For northern North America, we estimate a mean source of 16.6 to 17.9 Tg yr−1, which is dominated by fluxes in the Hudson Bay Lowlands (HBL) and western Canada, specifically the province of Alberta. Our estimate for the HBL, of 2.7 to 3.4 Tg yr−1, is close to the prior estimate (which includes wetland fluxes from the land surface model, LPX-Bern) and to other independent inversion estimates. However, our estimate for Alberta, of 5.0 to 5.8 Tg yr−1, is significantly higher than the prior (which also includes anthropogenic sources from the EDGAR-4.2FT2010 inventory). Since the fluxes from this region persist throughout the winter, this may signify that the anthropogenic emissions are underestimated. For northern Eurasia, we find a mean source of 52.2 to 55.5 Tg yr−1, with a strong contribution from fluxes in the Western Siberian Lowlands (WSL) for which we estimate a source of 19.3 to 19.9 Tg yr−1. Over the 9-year inversion period, we find significant year-to-year variations in the fluxes, which in North America, and specifically in the HBL, appear to be driven at least in part by soil temperature, while in the WSL, the variability is more dependent on soil moisture. Moreover, we find significant positive trends in the CH4 fluxes in North America of 0.38 to 0.57 Tg yr−2, and northern Eurasia of 0.76 to 1.09 Tg yr−2. In North America, this could be due to an increase in soil temperature, while in North Eurasia, specifically Russia, the trend is likely due, at least in part, to an increase in anthropogenic sources.

Citation: Thompson, R. L., Sasakawa, M., Machida, T., Aalto, T., Worthy, D., Lavric, J. V., Lund Myhre, C., and Stohl, A.: Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion, Atmos. Chem. Phys., 17, 3553-3572, https://doi.org/10.5194/acp-17-3553-2017, 2017.
Publications Copernicus
Download
Short summary
Methane (CH4) fluxes were estimated for the high northern latitudes for 2005–2013 based on observations of atmospheric CH4 mixing ratios. Methane fluxes were found to be higher than prior estimates in northern Eurasia and Canada, especially in the Western Siberian Lowlands and the Canadian province Alberta. Significant inter-annual variations in the fluxes were found as well as a small positive trend. In Canada, the trend may be related to an increase in soil temperature over the study period.
Methane (CH4) fluxes were estimated for the high northern latitudes for 2005–2013 based on...
Share