Articles | Volume 17, issue 5
https://doi.org/10.5194/acp-17-3279-2017
https://doi.org/10.5194/acp-17-3279-2017
Research article
 | 
07 Mar 2017
Research article |  | 07 Mar 2017

Causes of interannual variability over the southern hemispheric tropospheric ozone maximum

Junhua Liu, Jose M. Rodriguez, Stephen D. Steenrod, Anne R. Douglass, Jennifer A. Logan, Mark A. Olsen, Krzysztof Wargan, and Jerald R. Ziemke

Related authors

Enhancing Long-Term Trend Simulation of Global Tropospheric OH and Its Drivers from 2005–2019: A Synergistic Integration of Model Simulations and Satellite Observations
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
EGUsphere, https://doi.org/10.5194/egusphere-2024-410,https://doi.org/10.5194/egusphere-2024-410, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Technical note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward assessing the feasibility of a global observation strategy
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys., 23, 6319–6338, https://doi.org/10.5194/acp-23-6319-2023,https://doi.org/10.5194/acp-23-6319-2023, 2023
Short summary
Multidecadal increases in global tropospheric ozone derived from ozonesonde and surface site observations: can models reproduce ozone trends?
Amy Christiansen, Loretta J. Mickley, Junhua Liu, Luke D. Oman, and Lu Hu
Atmos. Chem. Phys., 22, 14751–14782, https://doi.org/10.5194/acp-22-14751-2022,https://doi.org/10.5194/acp-22-14751-2022, 2022
Short summary
A machine learning methodology for the generation of a parameterization of the hydroxyl radical
Daniel C. Anderson, Melanie B. Follette-Cook, Sarah A. Strode, Julie M. Nicely, Junhua Liu, Peter D. Ivatt, and Bryan N. Duncan
Geosci. Model Dev., 15, 6341–6358, https://doi.org/10.5194/gmd-15-6341-2022,https://doi.org/10.5194/gmd-15-6341-2022, 2022
Short summary
Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere
Junhua Liu, Jose M. Rodriguez, Luke D. Oman, Anne R. Douglass, Mark A. Olsen, and Lu Hu
Atmos. Chem. Phys., 20, 6417–6433, https://doi.org/10.5194/acp-20-6417-2020,https://doi.org/10.5194/acp-20-6417-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
MIXv2: a long-term mosaic emission inventory for Asia (2010–2017)
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024,https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Organosulfate produced from consumption of SO3 speeds up sulfuric acid–dimethylamine atmospheric nucleation
Xiaomeng Zhang, Yongjian Lian, Shendong Tan, and Shi Yin
Atmos. Chem. Phys., 24, 3593–3612, https://doi.org/10.5194/acp-24-3593-2024,https://doi.org/10.5194/acp-24-3593-2024, 2024
Short summary
Contribution of expanded marine sulfur chemistry to the seasonal variability of dimethyl sulfide oxidation products and size-resolved sulfate aerosol
Linia Tashmim, William C. Porter, Qianjie Chen, Becky Alexander, Charles H. Fite, Christopher D. Holmes, Jeffrey R. Pierce, Betty Croft, and Sakiko Ishino
Atmos. Chem. Phys., 24, 3379–3403, https://doi.org/10.5194/acp-24-3379-2024,https://doi.org/10.5194/acp-24-3379-2024, 2024
Short summary
Spatial disparities of ozone pollution in the Sichuan Basin spurred by extreme, hot weather
Nan Wang, Yunsong Du, Dongyang Chen, Haiyan Meng, Xi Chen, Li Zhou, Guangming Shi, Yu Zhan, Miao Feng, Wei Li, Mulan Chen, Zhenliang Li, and Fumo Yang
Atmos. Chem. Phys., 24, 3029–3042, https://doi.org/10.5194/acp-24-3029-2024,https://doi.org/10.5194/acp-24-3029-2024, 2024
Short summary
Global impacts of aviation on air quality evaluated at high resolution
Sebastian D. Eastham, Guillaume P. Chossière, Raymond L. Speth, Daniel J. Jacob, and Steven R. H. Barrett
Atmos. Chem. Phys., 24, 2687–2703, https://doi.org/10.5194/acp-24-2687-2024,https://doi.org/10.5194/acp-24-2687-2024, 2024
Short summary

Cited articles

Allen, D., Pickering, K., Duncan, B., and Damon, M.: Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model, J. Geophys. Res.-Atmos., 115, D22301, https://doi.org/10.1029/2010jd014062, 2010.
Bals-Elsholz, T. M., Atallah, E. H., Bosart, L. F., Wasula, T. A., Cempa, M. J., and Lupo, A. R.: The wintertime Southern Hemisphere split jet: Structure, variability, and evolution, J. Climate, 14, 4191–4215, https://doi.org/10.1175/1520-0442(2001)014<4191:twshsj>2.0.co;2, 2001.
Bjerknes, J.: Atmospheric teleconnections from the equatorial Pacific, Mon. Weather Rev., 97, 163–172, 1969.
Chandra, S., Ziemke, J. R., Min, W., and Read, W. G.: Effects of 1997–1998 El Nino on tropospheric ozone and water vapor, Geophys. Res. Lett., 25, 3867–3870, https://doi.org/10.1029/98gl02695, 1998.
Chandra, S., Ziemke, J. R., Bhartia, P. K., and Martin, R. V.: Tropical tropospheric ozone: Implications for dynamics and biomass burning, J. Geophys. Res.-Atmos., 107, ACH 3-1–ACH 3-17, https://doi.org/10.1029/2001jd000447, 2002.
Download
Short summary
We quantify the relative contribution of processes controlling the interannual variability (IAV) of tropospheric ozone over the southern hemispheric tropospheric ozone maximum (SHTOM) with GMI chemistry transport model. We use various GMI tracer diagnostics, including a StratO3 tracer to quantify the stratospheric impact, and tagged CO tracers to track the emission sources. Our result shows that the stratospheric contribution is the most important factor driving the IAV of upper tropospheric O3.
Altmetrics
Final-revised paper
Preprint