Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 4 | Copyright
Atmos. Chem. Phys., 17, 2795-2816, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Feb 2017

Research article | 23 Feb 2017

Global emissions of fluorinated greenhouse gases 2005–2050 with abatement potentials and costs

Pallav Purohit and Lena Höglund-Isaksson Pallav Purohit and Lena Höglund-Isaksson
  • International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Abstract. This study uses the GAINS model framework to estimate current and future emissions of fluorinated greenhouse gases (F-gases), their abatement potentials, and costs for twenty source sectors and 162 countries and regions, which are aggregated to produce global estimates. Global F-gas (HFCs, PFCs, and SF6) emissions are estimated at 0.7PgCO2 eq.  in 2005 with an expected increase to 3.7PgCO2 eq.  in 2050 if application of control technology remains at the current level. There are extensive opportunities to reduce emissions using existing technology and alternative substances with low global warming potential. Estimates show that it would be technically feasible to reduce cumulative F-gas emissions from 81 to 11PgCO2 eq.  between 2018 and 2050. A reduction in cumulative emissions to 23PgCO2 eq.  is estimated to be possible at a marginal abatement cost below 10EURt−1CO2eq. We also find that future F-gas abatement is expected to become relatively more costly for developing than developed countries due to differences in the sector contribution to emissions and abatement potentials.

Download & links
Publications Copernicus
Short summary
Fluorinated gas (F-gas) emissions have increased significantly in recent years and are expected to rise further due to increased demand for cooling services. This study uses a bottom-up approach to assess global F-gas emissions and their abatement potentials and costs for 2005–2050. In the long run F-gas emissions can be almost eliminated using existing alternative options, although achieving deep cuts in emissions is found to be relatively more expensive in developing than developed countries.
Fluorinated gas (F-gas) emissions have increased significantly in recent years and are expected...