Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 4 | Copyright
Atmos. Chem. Phys., 17, 2709-2720, 2017
https://doi.org/10.5194/acp-17-2709-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Feb 2017

Research article | 22 Feb 2017

Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015

Gunnar Myhre et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (02 Dec 2016)  Author's response
ED: Referee Nomination & Report Request started (02 Dec 2016) by Jason West
ED: Reconsider after minor revisions (Editor review) (19 Dec 2016) by Jason West
AR by Gunnar Myhre on behalf of the Authors (12 Jan 2017)  Author's response    Manuscript
ED: Publish as is (07 Feb 2017) by Jason West
Publications Copernicus
Download
Short summary
Over the past decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990–2015, as simulated by seven global atmospheric composition models. The global mean radiative forcing is more strongly positive than reported in IPCC AR5.
Over the past decades, the geographical distribution of emissions of substances that alter the...
Citation
Share