Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 17, 2631-2652, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
21 Feb 2017
Global carbonyl sulfide (OCS) measured by MIPAS/Envisat during 2002–2012
Norbert Glatthor1, Michael Höpfner1, Adrian Leyser1,a, Gabriele P. Stiller1, Thomas von Clarmann1, Udo Grabowski1, Sylvia Kellmann1, Andrea Linden1, Björn-Martin Sinnhuber1, Gisèle Krysztofiak2, and Kaley A. Walker3 1Karlsruher Institut für Technologie, Institut für Meteorologie und Klimaforschung, Karlsruhe, Germany
2University of Orléans, LPC2E, CNRS, Orléans, France
3Department of Physics, University of Toronto, Toronto, Canada
anow at: Deutscher Wetterdienst, Abteilung Basisvorhersagen, Offenbach, Germany
Abstract. We present a global carbonyl sulfide (OCS) data set covering the period June 2002 to April 2012, derived from FTIR (Fourier transform infrared) limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite. The vertical resolution is 4–5 km in the height region 6–15 km and 15 at 40 km altitude. The total estimated error amounts to 40–50 pptv between 10 and 20 km and to 120 pptv at 40 km altitude. MIPAS OCS data show no systematic bias with respect to balloon observations, with deviations mostly below ±50 pptv. However, they are systematically higher than the OCS volume mixing ratios of the ACE-FTS instrument on SCISAT, with maximum deviations of up to 100 pptv in the altitude region 13–16 km. The data set of MIPAS OCS exhibits only moderate interannual variations and low interhemispheric differences. Average concentrations at 10 km altitude range from 480 pptv at high latitudes to 500–510 pptv in the tropics and at northern mid-latitudes. Seasonal variations at 10 km altitude amount to up to 35 pptv in the Northern and up to 15 pptv in the Southern Hemisphere. Northern hemispheric OCS abundances at 10 km altitude peak in June in the tropics and around October at high latitudes, while the respective southern hemispheric maxima were observed in July and in November. Global OCS distributions at 250 hPa (∼ 10–11 km) show enhanced values at low latitudes, peaking during boreal summer above the western Pacific and the Indian Ocean, which indicates oceanic release. Further, a region of depleted OCS amounts extending from Brazil to central and southern Africa was detected at this altitude, which is most pronounced in austral summer. This depletion is related to seasonally varying vegetative uptake by the tropical forests. Typical signatures of biomass burning like the southern hemispheric biomass burning plume are not visible in MIPAS data, indicating that this process is only a minor source of upper tropospheric OCS. At the 150 hPa level (∼ 13–14 km) enhanced amounts of OCS were also observed inside the Asian monsoon anticyclone, but this enhancement is not especially outstanding compared to other low latitude regions at the same altitude. At the 80 hPa level (∼ 17–18 km), equatorward transport of mid-latitude air masses containing lower OCS amounts around the summertime anticyclones was observed. A significant trend could not be detected in upper tropospheric MIPAS OCS amounts, which points to globally balanced sources and sinks. Simulations with the ECHAM-MESSy model reproduce the observed latitudinal cross sections fairly well.

Citation: Glatthor, N., Höpfner, M., Leyser, A., Stiller, G. P., von Clarmann, T., Grabowski, U., Kellmann, S., Linden, A., Sinnhuber, B.-M., Krysztofiak, G., and Walker, K. A.: Global carbonyl sulfide (OCS) measured by MIPAS/Envisat during 2002–2012, Atmos. Chem. Phys., 17, 2631-2652,, 2017.
Publications Copernicus
Short summary
To date, information on the global distribution of atmospheric carbonyl sulfide (OCS) is still rather sparse. However, detailed knowledge of the OCS distribution is of scientific interest, because this trace gas is on one of the major sources of atmospheric sulfur, which is a prerequisite of the stratospheric aerosol layer. Under this aspect we present a comprehensive space-borne data set of global OCS concentrations covering the period from June 2002 to April 2012.
To date, information on the global distribution of atmospheric carbonyl sulfide (OCS) is still...