Supplement of Atmos. Chem. Phys., 17, 14975–14985, 2017
https://doi.org/10.5194/acp-17-14975-2017-supplement
© Author(s) 2017. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China

Guohua Zhang et al.

Correspondence to: Xinhui Bi (bixh@gig.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
SPAMS

Individual particles are introduced into SPAMS through a critical orifice. They are focused and accelerated to specific velocities, determined by two continuous diode Nd:YAG laser beams (532 nm), which are used to trigger a pulsed laser (266 nm) to desorb/ionize the particles. The produced positive and negative molecular fragments are recorded. In summary, a velocity, a detection moment, and an ion mass spectrum are recorded for each ionized particle, while there is no mass spectrum for not ionized particles. The velocity could be converted to d_{va} based on a calibration using polystyrene latex spheres (PSL, Duke Scientific Corp., Palo Alto) with predefined sizes. The accuracy for the derived d_{va} is within ±10%.

Aethalometer data analysis

The absorption coefficients at seven different wavelengths (370, 450, 520, 590, 660, 880 and 950 nm) were obtained by the Aethalometers. A variable attenuation (ATN), is defined to represent the filter attenuation through the sample spot on a filter (Weingartner et al., 2003; Arnott et al., 2005; Backman et al., 2016). It is well known that the measured ATN may differ from the true aerosol absorption due to ‘filter loading effect’, a phenomenon which appears as a gradual decrease of instrumental response as the aerosol loading on the filter increases (Arnott et al., 2005). Therefore, two calibration factors are introduced to convert aethalometer attenuation measurements to “real” absorption coefficient (Weingartner et al., 2003). At 880 nm wavelength, light absorption can be attributed to BC alone rather than the other aerosol particles due to their significantly less absorption at long wavelength (e.g., Sandradewi et al., 2008; Yang et al., 2009). For AE–31, a specific attenuation cross-section σ_{ATN} of 16.6 m2 g$^{-1}$, recommended by the manufacturer, was applied to calculate the EBC concentration with the equation: $EBC = \frac{b_{ATN}}{\sigma_{ATN}}$, where b_{ATN} is the optical attenuation coefficient. For AE-33, the ATN was converted to an EBC concentration using the mass absorption cross section of 7.77 m2 g$^{-1}$ according to the method recommended by Drinovec et al. (2015).
The AE-31 used in the present study may suffer from the effects described above. Differently, the AE-33 has been improved by the incorporation of a filter loading correction part, based on a two parallel spot measurement of optical absorption. It could provide a real-time output of the “loading compensation” parameter to compensate for the “loading effect”. The details of the principle of operation, data deduction, and error budget of the AE-33, the inherent uncertainties in its technique and the corrections are extensively available in the literature (Drinovec et al., 2015). Therefore, we reported EBC concentration from the results of AE-33. The detection limit for EBC measurements is < 10 ng m$^{-3}$ with uncertainty at ~2 ng m$^{-3}$ at the time-base of 1 minute (http://www.mageesci.com/). As noted in the manuscript and Fig. S10, the EBC measured by AE-31 is significantly correlated (R$^2 = 0.9$, p < 0.001) with that measured by AE-33. Therefore, EBC concentrations derived from AE-31 were not corrected for the calculation of Mf$_{scav,EBC}$.

As shown in Fig. S10, AE-31 might underestimate ~15% of EBC for cloud INT particles in the calculation of Mf$_{scav,EBC}$. It is also noted that a threshold of 8 µm might underestimate the mass concentration of cloud RES EBC, since the size of droplets might extend to as low as 3 µm. Unfortunately, the size distribution of cloud droplets was not available for our study. Therefore, we assumed that the largest underestimate of the cloud RES particles is 30% to assess the uncertainties for Mf$_{scav,EBC}$ calculation. The mean Mf$_{scav,EBC}$ was recalculated to be 30-36%, when the assumed largest underestimate (i.e., 30%) of the cloud RES particles and ~15% underestimate of the cloud INT BC were taken into account in R1. Compared to mean Mf$_{scav,EBC} = 33\%$, the overall uncertainties for the estimate of mean Mf$_{scav,EBC}$ is with 10%.
Table S1. Average mass concentrations, mass fractions relative to fine particles and scavenged fractions of BC from the literatures.

<table>
<thead>
<tr>
<th>Site</th>
<th>site type</th>
<th>season (year)</th>
<th>ave (± std) (μg m⁻³)</th>
<th>mass fraction</th>
<th>M_fscav,EBC (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shenzhen, Southern China</td>
<td>urban</td>
<td>Summer (2011)</td>
<td>4.0 ± 3.1</td>
<td>~11%</td>
<td>-</td>
<td>(Lan, et al., 2013)</td>
</tr>
<tr>
<td>Guangzhou, Southern China</td>
<td>urban</td>
<td>Summer (2008)</td>
<td>8.86</td>
<td>-</td>
<td>-</td>
<td>(Wu, et al., 2013)</td>
</tr>
<tr>
<td>Guangzhou, Southern China</td>
<td>urban</td>
<td>Fall(2010)</td>
<td>4.3</td>
<td>~4%</td>
<td>-</td>
<td>(Zhang, et al., 2013)</td>
</tr>
<tr>
<td>Shenzhen, Southern China</td>
<td>urban</td>
<td>Fall(2009)</td>
<td>6.0 ± 6.3</td>
<td>-</td>
<td>-</td>
<td>(Huang, et al., 2012)</td>
</tr>
<tr>
<td>Ba Guang village, southern China</td>
<td>Rural</td>
<td>Fall(2009)</td>
<td>2.6 ± 1.0</td>
<td>-</td>
<td>-</td>
<td>(Huang, et al., 2012)</td>
</tr>
<tr>
<td>Mt. Soledad (251 m m.s.l.)</td>
<td>marine</td>
<td>Summer (2012)</td>
<td>0.07</td>
<td>-</td>
<td>-</td>
<td>(Schroder, et al., 2015)</td>
</tr>
<tr>
<td>Yongxing Island, Southern China</td>
<td>marine</td>
<td>Summer (2008)</td>
<td>0.54</td>
<td>-</td>
<td>-</td>
<td>(Wu, et al., 2013)</td>
</tr>
<tr>
<td>A coastal Chilean hill, (Valparaiso), 450 m a.s.l.</td>
<td>low-altitude</td>
<td>Winter (2013)</td>
<td>0.34 - 0.95</td>
<td>-</td>
<td>13 - 50</td>
<td>(Hitzenberger et al., 2016)</td>
</tr>
<tr>
<td>Puy de Dome (France), 1465 m a.s.l.</td>
<td>mid-altitude</td>
<td>Winter-spring (2001)</td>
<td>-</td>
<td>-</td>
<td>33 - 74</td>
<td>(Sellegri et al., 2003)</td>
</tr>
<tr>
<td>Nova Scotia, Canada (Below 1 km)</td>
<td>mid-altitude</td>
<td>Summer (1993)</td>
<td>0.06 ± 0.01</td>
<td>-</td>
<td>2 - 32</td>
<td>(Chylek et al., 1996)</td>
</tr>
<tr>
<td>Location</td>
<td>Altitude</td>
<td>Season</td>
<td>Sample Year</td>
<td>Mass Fraction</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Nova Scotia, Canada (1-3 km)</td>
<td>mid-high</td>
<td>Summer</td>
<td>1993</td>
<td>0.22 ± 0.03</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mt. Rax (1644 m a.s.l.)</td>
<td>high-alt</td>
<td>Spring</td>
<td>1999</td>
<td>0.43</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mt. Rax (1644 m a.s.l.)</td>
<td>high-alt</td>
<td>Spring</td>
<td>2000</td>
<td>0.72</td>
<td>-</td>
<td>54 ± 25</td>
</tr>
<tr>
<td>Alpine Jungfraujoch (Switzerland), 3850 m a.s.l.</td>
<td>high-alt</td>
<td>Summer</td>
<td>2004</td>
<td>0.06</td>
<td>-</td>
<td>61</td>
</tr>
<tr>
<td>Alpine Jungfraujoch (Switzerland), 3850 m a.s.l.</td>
<td>high-alt</td>
<td>Winter</td>
<td>2004</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a not available.

b mass fraction relative to PMs.
Figure S1. A scheme of the instrumentation setup in this study. The dash line illustrates that the sampling pipe was either connected to Inlet 1# or Inlet 2#. As described in section 2.1, the cloud INT and RES particles were intermittently measured by these instruments during Cloud III, through manually connect the sampling pipe to either Inlet 1# or Inlet 2# at approximately one-hour intervals. The GCVI includes various sensors to monitor the temperature/RH, visibility (http://belfortinstrument.com/products/all-environment-visibility-sensor/), and rainfall/snow (http://www.meltyourice.com/products/controllers/ds-82/). The integrated rainfall/snow sensor helps to exclude sampling during rainy periods. TEOM (https://www.thermofisher.com) measures the mass concentration of aerosol with the detection limited of ~100 ng m\(^{-3}\), with an accuracy of ±0.75%. MSP SMPS (https://www.mspcorp.com) measures the number-based size distribution of particles
ranged between 10-1000 nm in 48 size bins, with a detection limit of ~1 cm3, and an accuracy of ±10%. Grimm SMPS (https://www.mspcorp.com) can measure the number-based size distribution of particles ranged between 10-1100 nm in 44 size bins, with a detection limit of ~1 cm3, and an accuracy of ±5%.
Figure S2. Statistic analysis on the RPA ratio of OC to BC (left), and the average mass spectra (right) for the BC types. Markers were selected as m/z 27, 43, 50, 51, 61, 63, -26 for OC, and carbon ion clusters (Cₙ⁺/⁻, n ≤ 5) for BC, the same as those in Fig. 3. More intense sulfate (RPA = ~0.3) was found for BC-sul2 and BC-OC-sul, relative to that
(RPA = ~0.15) for BC-sul1 type. More abundance of OC was found for BC-OC-sul, the mean peak area ratio OC/BC of which is ~1, higher than those (< 0.3) for other BC types.
Figure S3. The number-based digitized mass spectrum of cloud-free BC-containing particles at the remote high-altitude site. Y-axis indicates the number fraction of total particles that had detectable amounts of these individual ion peaks.
Figure S4. RPA ratio of ammonium (m/z 18), sulfate (m/z -97), nitrate (m/z -62), oxidized organics (m/z 43), and other organics (m/z 27, 50, 51, 61, 63, -26) to BC, and RPA of BC (carbon ion clusters (C_{n}^{+/-}, n \leq 5)) at the high elevation site, urban Guangzhou, and suburban sites (Heshan) during winter in southern China. The particles in Guangzhou and Heshan were similarly measured by SPAMS during winter. Despite of matrix effects due to the laser desorption/ionization for SPAMS, advances have been made in semi-quantifying individual chemical species, either through multivariate analysis or by applying peak intensities for specific ions (e.g., Jeong et al., 2011; Xing et al., 2011; Healy et al., 2013). RPA, defined as the peak area of each m/z divided by the
total dual ion mass spectral peak area, is related to the relative amount of a species on a
particle. Compared to absolute peak area, RPA was commonly applied because it is less
sensitive to the variability in ion intensities associated with particle-laser interactions. It
is also noted that matrix effects might be lower when calculation was performed for
similar particle type, i.e., BC-containing particles.
Figure S5. Correlation analysis of hourly average RPA for ammonium and sulfate associated with BC-containing particles. The correlation coefficient is a bit lower than expected might partly due to matrix effect in single particle mass spectrometry (e.g., Jeong et al., 2011; Xing et al., 2011; Healy et al., 2013).
Figure S6. Size-resolved $N_{f_{act}}$ estimated for three particle types of BC-containing particles. Note that this data only collected during Cloud III event when both cloud RES and INT particles were collected, however, not simultaneously but intermittently. It is noted that although the $N_{f_{act}}$ for BC-OC-sul type is lower than BC-sul types, the $N_{f_{act}}$ for all the BC-containing particles is similar to that of all the detected particles. We attributed it to two reasons: (1) BC-OC-sul particles only accounted for ~20% of BC-containing particles, and (2) the other particles also contained OC-dominated particles (~10%).
Figure S7. A representative comparison between the size distributions measured by the SPAMS and the SMPS within 12 hours measurements. It should be noted that the diameter is represented as d_{va} by SPAMS, while the diameter measured by the SMPS is represented as electrical mobility diameter (d_m). Herein, the d_m was first converted to the d_{va} for the comparison. The conversion could be simplified to $d_m = d_{va} \ast \frac{\rho_{\text{eff}}}{\rho_0}$ (DeCarlo et al., 2004), where ρ_{eff} refers to the effective density, ρ_0 is the unit density 1.0 g cm$^{-3}$. The ρ_{eff} is assumed to be 1.5 g cm$^{-3}$ for the calculation (Hu et al., 2012).
Figure S8. RPA of each secondary species associated with BC-containing particles in cloud-free, INT, and RES particles as a function of particle sizes.
Figure S9. Correlation between time series of Num. of BC-containing particles and concentration of EBC. The volume equivalent diameter of BC particles cores measured in southern China was typically around 200 nm (Huang et al., 2011; Huang et al., 2012). Huang et al. (2011) showed that a large fraction (> 60%) of BC particles are internally mixed with a significant amount of non-refractory materials (coating thickness > 70 nm) at a rural site in southern China. Furthermore, Yu et al. (2010) showed that over 50% of BC are above 500 nm, also indicating internally mixed of BC, with regard that majority of BC particles cores have volume equivalent diameter less than 500 nm (Huang et al., 2011; Huang et al., 2012). As also discussed in section 3.1, BC-containing particles were already heavily mixed with secondary species arriving at our site, and therefore they should be larger enough for the detection by SPAMS.
Figure S10. Correlation analysis of EBC measured by AE31 and AE33. They measured the same aerosol for out-of-cloud (including cloud INT and cloud-free) particles. However, during cloud events, AE33 measured cloud RES particles or cloud INT particles for some periods, while AE31 measured cloud INT particles. Therefore, the EBC were compared when the same aerosol were measured, as shown in green dots. The result indicates that they are highly correlated, with EBC measured by AE31 only slightly lower than those by AE33.
Figure S11. Box and whisker plot of $M_{\text{scav,EBC}}$ for each cloud event. In a box and whisker plot, the lower, median and upper lines of the box denote the 25th, 50th, and 75th percentiles, respectively, and the lower and upper edges of the whisker denote the 10th and 90th percentiles, respectively.
Reference

