Articles | Volume 17, issue 24
https://doi.org/10.5194/acp-17-14853-2017
https://doi.org/10.5194/acp-17-14853-2017
Research article
 | 
14 Dec 2017
Research article |  | 14 Dec 2017

Mountain waves modulate the water vapor distribution in the UTLS

Romy Heller, Christiane Voigt, Stuart Beaton, Andreas Dörnbrack, Andreas Giez, Stefan Kaufmann, Christian Mallaun, Hans Schlager, Johannes Wagner, Kate Young, and Markus Rapp

Related authors

Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023,https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Investigating the radiative effect of Arctic cirrus measured in situ during the winter 2015–2016
Andreas Marsing, Ralf Meerkötter, Romy Heller, Stefan Kaufmann, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, and Christiane Voigt
Atmos. Chem. Phys., 23, 587–609, https://doi.org/10.5194/acp-23-587-2023,https://doi.org/10.5194/acp-23-587-2023, 2023
Short summary
Icing wind tunnel measurements of supercooled large droplets using the 12 mm total water content cone of the Nevzorov probe
Johannes Lucke, Tina Jurkat-Witschas, Romy Heller, Valerian Hahn, Matthew Hamman, Wolfgang Breitfuss, Venkateshwar Reddy Bora, Manuel Moser, and Christiane Voigt
Atmos. Meas. Tech., 15, 7375–7394, https://doi.org/10.5194/amt-15-7375-2022,https://doi.org/10.5194/amt-15-7375-2022, 2022
Short summary
Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model
Mattia Righi, Johannes Hendricks, Ulrike Lohmann, Christof Gerhard Beer, Valerian Hahn, Bernd Heinold, Romy Heller, Martina Krämer, Michael Ponater, Christian Rolf, Ina Tegen, and Christiane Voigt
Geosci. Model Dev., 13, 1635–1661, https://doi.org/10.5194/gmd-13-1635-2020,https://doi.org/10.5194/gmd-13-1635-2020, 2020
Short summary
Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016
Andreas Marsing, Tina Jurkat-Witschas, Jens-Uwe Grooß, Stefan Kaufmann, Romy Heller, Andreas Engel, Peter Hoor, Jens Krause, and Christiane Voigt
Atmos. Chem. Phys., 19, 10757–10772, https://doi.org/10.5194/acp-19-10757-2019,https://doi.org/10.5194/acp-19-10757-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
Atmos. Chem. Phys., 24, 1429–1450, https://doi.org/10.5194/acp-24-1429-2024,https://doi.org/10.5194/acp-24-1429-2024, 2024
Short summary
Air-sea interactions in stable atmospheric conditions: Lessons from the desert semi-enclosed Gulf of Eilat (Aqaba)
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
EGUsphere, https://doi.org/10.5194/egusphere-2023-1724,https://doi.org/10.5194/egusphere-2023-1724, 2024
Short summary
Evaluation of methods to determine the surface mixing layer height of the atmospheric boundary layer in the central Arctic during polar night and transition to polar day in cloudless and cloudy conditions
Elisa F. Akansu, Sandro Dahlke, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15473–15489, https://doi.org/10.5194/acp-23-15473-2023,https://doi.org/10.5194/acp-23-15473-2023, 2023
Short summary
The role of a low-level jet for stirring the stable atmospheric surface layer in the Arctic
Ulrike Egerer, Holger Siebert, Olaf Hellmuth, and Lise Lotte Sørensen
Atmos. Chem. Phys., 23, 15365–15373, https://doi.org/10.5194/acp-23-15365-2023,https://doi.org/10.5194/acp-23-15365-2023, 2023
Short summary
Detection of dilution due to turbulent mixing vs. precipitation scavenging effects on biomass burning aerosol concentrations using stable water isotope ratios during ORACLES
Dean Henze, David Noone, and Darin Toohey
Atmos. Chem. Phys., 23, 15269–15288, https://doi.org/10.5194/acp-23-15269-2023,https://doi.org/10.5194/acp-23-15269-2023, 2023
Short summary

Cited articles

Bramberger, M., Dörnbrack, A., Bossert, K., Ehard, B., Fritts, D. C., Kaifler, B., Mallaun, C., Orr, A., Pautet, P. D., Rapp, M., Taylor, M. J., Vosper, S., Williams, B., and Witschas, B.: Does strong tropospheric forcing cause large-amplitude mesospheric gravity waves? – A DEEPWAVE Case Study, J. Geophys. Res.-Atmos., 122, 11422–11443, https://doi.org/10.1002/2017JD027371, 2017.
Danielsen, E. F., Hipskind, R. S., Starr, W. L., Vedder, J. F., Gaines, S. E., Kley, D., and Kelly, K. K.: Irreversible Transport in the Stratosphere by Internal Waves of Short Vertical Wavelength, J. Geophys. Res.-Atmos., 96, 17433–17452, https://doi.org/10.1029/91jd01362, 1991.
Ehard, B., Kaifler, B., Kaifler, N., and Rapp, M.: Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements, Atmos. Meas. Tech., 8, 4645–4655, https://doi.org/10.5194/amt-8-4645-2015, 2015.
Ehard, B., Achtert, P., Dörnbrack, A., Gisinger, S., Gumbel, J., Khaplanov, M., Rapp, M., and Wagner, J.: Combination of Lidar and Model Data for Studying Deep Gravity Wave Propagation, Mon. Weather Rev., 144, 77–98, https://doi.org/10.1175/mwr-d-14-00405.1, 2016.
Fischer, H., Wienhold, F. G., Hoor, P., Bujok, O., Schiller, C., Siegmund, P., Ambaum, M., Scheeren, H. A., and Lelieveld, J.: Tracer correlations in the northern high latitude lowermost stratosphere: Influence of cross-tropopause mass exchange, Geophys. Res. Lett., 27, 97–100, https://doi.org/10.1029/1999gl010879, 2000.
Download
Altmetrics
Final-revised paper
Preprint