Articles | Volume 17, issue 23
https://doi.org/10.5194/acp-17-14543-2017
https://doi.org/10.5194/acp-17-14543-2017
Research article
 | 
06 Dec 2017
Research article |  | 06 Dec 2017

The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker

Related authors

The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023,https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022,https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022,https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
The SPARC water vapour assessment II: profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019,https://doi.org/10.5194/amt-12-2693-2019, 2019
The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites
Farahnaz Khosrawi, Stefan Lossow, Gabriele P. Stiller, Karen H. Rosenlof, Joachim Urban, John P. Burrows, Robert P. Damadeo, Patrick Eriksson, Maya García-Comas, John C. Gille, Yasuko Kasai, Michael Kiefer, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Alexei Rozanov, Christopher E. Sioris, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 11, 4435–4463, https://doi.org/10.5194/amt-11-4435-2018,https://doi.org/10.5194/amt-11-4435-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Significant decline of mesospheric water vapor at the NDACC site near Bern in the period 2007 to 2018
Martin Lainer, Klemens Hocke, Ellen Eckert, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 6611–6620, https://doi.org/10.5194/acp-19-6611-2019,https://doi.org/10.5194/acp-19-6611-2019, 2019
Short summary
Mesospheric nitric oxide model from SCIAMACHY data
Stefan Bender, Miriam Sinnhuber, Patrick J. Espy, and John P. Burrows
Atmos. Chem. Phys., 19, 2135–2147, https://doi.org/10.5194/acp-19-2135-2019,https://doi.org/10.5194/acp-19-2135-2019, 2019
Short summary
Production and transport mechanisms of NO in the polar upper mesosphere and lower thermosphere in observations and models
Koen Hendrickx, Linda Megner, Daniel R. Marsh, and Christine Smith-Johnsen
Atmos. Chem. Phys., 18, 9075–9089, https://doi.org/10.5194/acp-18-9075-2018,https://doi.org/10.5194/acp-18-9075-2018, 2018
Short summary
The airglow layer emission altitude cannot be determined unambiguously from temperature comparison with lidars
Tim Dunker
Atmos. Chem. Phys., 18, 6691–6697, https://doi.org/10.5194/acp-18-6691-2018,https://doi.org/10.5194/acp-18-6691-2018, 2018
Short summary
Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors
Niall J. Ryan, Douglas E. Kinnison, Rolando R. Garcia, Christoph G. Hoffmann, Mathias Palm, Uwe Raffalski, and Justus Notholt
Atmos. Chem. Phys., 18, 1457–1474, https://doi.org/10.5194/acp-18-1457-2018,https://doi.org/10.5194/acp-18-1457-2018, 2018
Short summary

Cited articles

Boone, C. D., Nassar, R., Walker, K. A., Rochon, Y., McLeod, S. D., Rinsland, C. P., and Bernath, P. F.: Retrievals for the Atmospheric Chemistry Experiment Fourier-Transform Spectrometer, Appl. Opt., 44, 7218–7231, 2005.
Boone, C. D., Walker, K. A., and Bernath, P. F.: Version 3 Retrievals for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), The Atmospheric Chemistry Experiment ACE at 10: A Solar Occultation Anthology, edited by: Bernath, P. F., A. Deepak Publishing, Hampton, Virginia, USA, 103–127, 2013.
Connor, B. J., Parrish, A., and Tsou, J. J.: Detection of stratospheric ozone trends by ground-based microwave observations, in: Remote Sensing of Atmospheric Chemistry, edited by: McElroy, J. L. and McNeal, R., Proc. SPIE Int. Soc. Opt. Eng., 1491, 218–230, 1991.
DeWachter, E., Haefele, A., Kämpfer, N., Ka, S., Lee, J. E., and Oh, J. J.: The Seoul Water Vapour Radiometer for the Middle Atmosphere; Calibration, Retrieval and Validation, Transactions on Geoscience and Remote Sensing, 49, 1052–1062, https://doi.org/10.1109/TGRS.2010.2072932, 2011.
Deuber, B., Haefele, A., Feist, D. G., Martin, L., Kämpfer, N., Nedoluha, G. E., Yushkov, V., Khaykin, S., Kivi, R., and Vomel, H.: Middle Atmospheric Water Vapour Radiometer – MIAWARA: Validation and first results of the LAUTLOS / WAVVAP campaign, J. Geophys. Res., 110, D13306, https://doi.org/10.1029/2004JD005543, 2005.
Download
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Altmetrics
Final-revised paper
Preprint