Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 23 | Copyright
Atmos. Chem. Phys., 17, 14333-14352, 2017
https://doi.org/10.5194/acp-17-14333-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Dec 2017

Research article | 04 Dec 2017

Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing

Ben Newsome and Mat Evans
Related authors
Global impact of nitrate photolysis in sea-salt aerosol on NOx, OH, and O3 in the marine boundary layer
Prasad Kasibhatla, Tomás Sherwen, Mathew J. Evans, Lucy J. Carpenter, Chris Reed, Becky Alexander, Qianjie Chen, Melissa P. Sulprizio, James D. Lee, Katie A. Read, William Bloss, Leigh R. Crilley, William C. Keene, Alexander A. P. Pszenny, and Alma Hodzic
Atmos. Chem. Phys., 18, 11185-11203, https://doi.org/10.5194/acp-18-11185-2018,https://doi.org/10.5194/acp-18-11185-2018, 2018
Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth System Model (GEOS-5 ESM)
Lu Hu, Christoph A. Keller, Michael S. Long, Tomás Sherwen, Benjamin Auer, Arlindo Da Silva, Jon E. Nielsen, Steven Pawson, Matthew A. Thompson, Atanas L. Trayanov, Katherine R. Travis, Stuart K. Grange, Mat J. Evans, and Daniel J. Jacob
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-111,https://doi.org/10.5194/gmd-2018-111, 2018
Manuscript under review for GMD
The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling
Mike J. Newland, Andrew R. Rickard, Tomás Sherwen, Mathew J. Evans, Luc Vereecken, Amalia Muñoz, Milagros Ródenas, and William J. Bloss
Atmos. Chem. Phys., 18, 6095-6120, https://doi.org/10.5194/acp-18-6095-2018,https://doi.org/10.5194/acp-18-6095-2018, 2018
DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry
Qianjie Chen, Tomás Sherwen, Mathew Evans, and Becky Alexander
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-410,https://doi.org/10.5194/acp-2018-410, 2018
Revised manuscript under review for ACP
Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign
Federica Pacifico, Claire Delon, Corinne Jambert, Pierre Durand, Eleanor Morris, Mat J. Evans, Fabienne Lohou, Solène Derrien, Venance H. E. Donnou, Arnaud V. Houeto, Irene Reinares Martinez, and Pierre-Etienne Brilouet
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1198,https://doi.org/10.5194/acp-2017-1198, 2018
Manuscript under review for ACP
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Evaluating high-resolution forecasts of atmospheric CO and CO2 from a global prediction system during KORUS-AQ field campaign
Wenfu Tang, Avelino F. Arellano, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Anna Agustí-Panareda, Mark Parrington, Sebastien Massart, Benjamin Gaubert, Youngjae Lee, Danbi Kim, Jinsang Jung, Jinkyu Hong, Je-Woo Hong, Yugo Kanaya, Mindo Lee, Ryan M. Stauffer, Anne M. Thompson, James H. Flynn, and Jung-Hun Woo
Atmos. Chem. Phys., 18, 11007-11030, https://doi.org/10.5194/acp-18-11007-2018,https://doi.org/10.5194/acp-18-11007-2018, 2018
Revolatilisation of soil-accumulated pollutants triggered by the summer monsoon in India
Gerhard Lammel, Céline Degrendele, Sachin S. Gunthe, Qing Mu, Akila Muthalagu, Ondřej Audy, Chelackal V. Biju, Petr Kukučka, Marie D. Mulder, Mega Octaviani, Petra Příbylová, Pourya Shahpoury, Irene Stemmler, and Aswathy E. Valsan
Atmos. Chem. Phys., 18, 11031-11040, https://doi.org/10.5194/acp-18-11031-2018,https://doi.org/10.5194/acp-18-11031-2018, 2018
Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling
Sarah A. Strode, Junhua Liu, Leslie Lait, Róisín Commane, Bruce Daube, Steven Wofsy, Austin Conaty, Paul Newman, and Michael Prather
Atmos. Chem. Phys., 18, 10955-10971, https://doi.org/10.5194/acp-18-10955-2018,https://doi.org/10.5194/acp-18-10955-2018, 2018
Emissions preparation and analysis for multiscale air quality modeling over the Athabasca Oil Sands Region of Alberta, Canada
Junhua Zhang, Michael D. Moran, Qiong Zheng, Paul A. Makar, Pegah Baratzadeh, George Marson, Peter Liu, and Shao-Meng Li
Atmos. Chem. Phys., 18, 10459-10481, https://doi.org/10.5194/acp-18-10459-2018,https://doi.org/10.5194/acp-18-10459-2018, 2018
Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan
Paul A. Makar, Ayodeji Akingunola, Julian Aherne, Amanda S. Cole, Yayne-abeba Aklilu, Junhua Zhang, Isaac Wong, Katherine Hayden, Shao-Meng Li, Jane Kirk, Ken Scott, Michael D. Moran, Alain Robichaud, Hazel Cathcart, Pegah Baratzedah, Balbir Pabla, Philip Cheung, Qiong Zheng, and Dean S. Jeffries
Atmos. Chem. Phys., 18, 9897-9927, https://doi.org/10.5194/acp-18-9897-2018,https://doi.org/10.5194/acp-18-9897-2018, 2018
Cited articles
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., , Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D., and Wine, P.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, Jet Propulsion Laboratory, available at: http://jpldataeval.jpl.nasa.gov/ (last access: 1 October 2017), 2015.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G. J., and Speizer, F. E.: An Association between Air Pollution and Mortality in Six U.S. Cities, N. Engl. J. Med., 329, 1753–1759, https://doi.org/10.1056/NEJM199312093292401, 1993.
Publications Copernicus
Download
Short summary
We explore the uncertainty in the predictions of a chemical transport model (GEOS-Chem) from uncertainty in 60 inorganic rate constants and photolysis rates. We find uncertainty in the global mean ozone burden of 10 %, in global mean OH of 16 %, methane lifetimes of 16 %, and tropospheric ozone radiative forcings of 13 %. Reductions in the uncertainty of rate constants of these simple reactions would reduce uncertainty in our understanding of atmospheric composition.
We explore the uncertainty in the predictions of a chemical transport model (GEOS-Chem) from...
Citation
Share