Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 22 | Copyright

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 17, 13891-13901, 2017
https://doi.org/10.5194/acp-17-13891-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Nov 2017

Research article | 22 Nov 2017

Insight into the in-cloud formation of oxalate based on in situ measurement by single particle mass spectrometry

Guohua Zhang et al.
Viewed
Total article views: 964 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
643 303 18 964 76 13 33
  • HTML: 643
  • PDF: 303
  • XML: 18
  • Total: 964
  • Supplement: 76
  • BibTeX: 13
  • EndNote: 33
Views and downloads (calculated since 18 Aug 2017)
Cumulative views and downloads (calculated since 18 Aug 2017)
Viewed (geographical distribution)
Total article views: 961 (including HTML, PDF, and XML) Thereof 954 with geography defined and 7 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited
Saved (final revised paper)
No saved metrics found.
Saved (discussion paper)
No saved metrics found.
Discussed (final revised paper)
No discussed metrics found.
Discussed (discussion paper)
No discussed metrics found.
Latest update: 15 Aug 2018
Publications Copernicus
Special issue
Download
Short summary
We first reported the size-resolved mixing state of oxalate in the cloud droplet residual, the cloud interstitial, and cloud-free particles by single particle mass spectrometry. Individual particle analysis provides unique insight into the formation and evolution of oxalate during in-cloud processing. The data show that in-cloud aqueous reactions dramatically improved the formation of oxalate from organic acids that were strongly associated with the aged biomass burning particles.
We first reported the size-resolved mixing state of oxalate in the cloud droplet residual, the...
Citation
Share