Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 22 | Copyright

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 17, 13891-13901, 2017
https://doi.org/10.5194/acp-17-13891-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 22 Nov 2017

Research article | 22 Nov 2017

Insight into the in-cloud formation of oxalate based on in situ measurement by single particle mass spectrometry

Guohua Zhang et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish as is (18 Oct 2017) by Armin Sorooshian
Publications Copernicus
Special issue
Download
Short summary
We first reported the size-resolved mixing state of oxalate in the cloud droplet residual, the cloud interstitial, and cloud-free particles by single particle mass spectrometry. Individual particle analysis provides unique insight into the formation and evolution of oxalate during in-cloud processing. The data show that in-cloud aqueous reactions dramatically improved the formation of oxalate from organic acids that were strongly associated with the aged biomass burning particles.
We first reported the size-resolved mixing state of oxalate in the cloud droplet residual, the...
Citation
Share