Supplement of

Future inhibition of ecosystem productivity by increasing wildfire pollution over boreal North America

X. Yue et al.

Correspondence to: Xu Yue (xuyueseas@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.
Figure S1. Comparison of (a, c, e) summer (June-August) and (b, d, f) winter (December-February) soil moisture at the top 1 m from (a, b) ModelE2-YIBs simulation, (c, d) CLM simulation, and (e, f) ERA-Interim reanalyses. The CLM simulation is perform using the Community Land Model driven with meteorological forcing from ERA-Interim reanalyses for 1980-2009 (Wang et al., 2016). The ERA-Interim reanalyses are downloaded from https://www.ecmwf.int. For >3300 land grids in the summer, the spatial correlation coefficient is $R = 0.25$ between ModelE2-YIBs and CLM, and $R = 0.34$ between CLM and ERA-Interim. The global area-weighted soil moisture is 0.22 mm3 mm$^{-3}$ for ModelE2-YIBs, 0.26 mm3 mm$^{-3}$ for CLM, and 0.23 mm3 mm$^{-3}$ for ERA-Interim. Statistics for winter are very similar to the summer results.
Figure S2. Predicted percentage changes in summer (a, b) GPP, and (c, d) autotrophic respiration caused by wildfire aerosols at (a, c) present day and (b, d) midcentury. Results for the 2010s are calculated as \((F10AERO/F10CTRL - 1) \times 100\%\). Results for the 2050s are calculated as \((F50AERO/F50CTRL - 1) \times 100\%\). Significant changes \((p<0.05)\) are marked with black dots.
Reference