Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 17, issue 22
Atmos. Chem. Phys., 17, 13521–13543, 2017
https://doi.org/10.5194/acp-17-13521-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 13521–13543, 2017
https://doi.org/10.5194/acp-17-13521-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Nov 2017

Research article | 15 Nov 2017

Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant

Donald D. Lucas et al.
Related authors  
Designing optimal greenhouse gas observing networks that consider performance and cost
D. D. Lucas, C. Yver Kwok, P. Cameron-Smith, H. Graven, D. Bergmann, T. P. Guilderson, R. Weiss, and R. Keeling
Geosci. Instrum. Method. Data Syst., 4, 121–137, https://doi.org/10.5194/gi-4-121-2015,https://doi.org/10.5194/gi-4-121-2015, 2015
Short summary
Failure analysis of parameter-induced simulation crashes in climate models
D. D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon, D. Domyancic, and Y. Zhang
Geosci. Model Dev., 6, 1157–1171, https://doi.org/10.5194/gmd-6-1157-2013,https://doi.org/10.5194/gmd-6-1157-2013, 2013
Related subject area  
Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Trans-Pacific transport and evolution of aerosols: spatiotemporal characteristics and source contributions
Zhiyuan Hu, Jianping Huang, Chun Zhao, Yuanyuan Ma, Qinjian Jin, Yun Qian, L. Ruby Leung, Jianrong Bi, and Jianmin Ma
Atmos. Chem. Phys., 19, 12709–12730, https://doi.org/10.5194/acp-19-12709-2019,https://doi.org/10.5194/acp-19-12709-2019, 2019
Short summary
Foreign influences on tropospheric ozone over East Asia through global atmospheric transport
Han Han, Jane Liu, Huiling Yuan, Tijian Wang, Bingliang Zhuang, and Xun Zhang
Atmos. Chem. Phys., 19, 12495–12514, https://doi.org/10.5194/acp-19-12495-2019,https://doi.org/10.5194/acp-19-12495-2019, 2019
Short summary
Estimating ground-level CO concentrations across China based on the national monitoring network and MOPITT: potentially overlooked CO hotspots in the Tibetan Plateau
Dongren Liu, Baofeng Di, Yuzhou Luo, Xunfei Deng, Hanyue Zhang, Fumo Yang, Michael L. Grieneisen, and Yu Zhan
Atmos. Chem. Phys., 19, 12413–12430, https://doi.org/10.5194/acp-19-12413-2019,https://doi.org/10.5194/acp-19-12413-2019, 2019
Short summary
Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals
Hengmao Wang, Fei Jiang, Jun Wang, Weimin Ju, and Jing M. Chen
Atmos. Chem. Phys., 19, 12067–12082, https://doi.org/10.5194/acp-19-12067-2019,https://doi.org/10.5194/acp-19-12067-2019, 2019
Short summary
Diagnosing spatial error structures in CO2 mole fractions and XCO2 column mole fractions from atmospheric transport
Thomas Lauvaux, Liza I. Díaz-Isaac, Marc Bocquet, and Nicolas Bousserez
Atmos. Chem. Phys., 19, 12007–12024, https://doi.org/10.5194/acp-19-12007-2019,https://doi.org/10.5194/acp-19-12007-2019, 2019
Short summary
Cited articles  
Albergel, A., Martin, D., Strauss, B., and Gros, J. M.: The Chernobyl accident: Modelling of dispersion over europe of the radioactive plume and comparison with air activity measurements, Atmos. Environ., 22, 2431–2444, https://doi.org/10.1016/0004-6981(88)90475-1, 1988.
An, X., Yao, B., Li, Y., Li, N., and Zhou, L.: Tracking source area of Shangdianzi station using Lagrangian particle dispersion model of FLEXPART, Meteorol. Appl., 21, 466–473, https://doi.org/10.1002/met.1358, 2014.
Andreev, I., Hittenberger, M., Hofer, P., Kromp-Kolb, H., Kromp, W., Seibert, P., and Wotawa, G.: Risks due to beyond design base accidents of nuclear power plants in Europe the methodology of riskmap, J. Hazard. Mater., 61, 257–262, https://doi.org/10.1016/S0304-3894(98)00130-7, 1998.
Athey, G. F., Fosmire, C., Mohseni, A., Ramsdell, J., and Sjoreen, A.: Radiological Assessment System for Consequence Analysis (RASCAL) Version 3.0, American Nuclear Society, 1999.
Avey, L., Garrett, T. J., and Stohl, A.: Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation, J. Geophys. Res.-Atmos., 112, D10S33, https://doi.org/10.1029/2006JD007581, 2007.
Publications Copernicus
Download
Short summary
Monte Carlo ensemble simulations, Bayesian inversion, and machine learning are used to quantify uncertainty in the atmospheric transport and emissions of a controlled tracer released from a nuclear power plant. Uncertainty of different settings in a weather model and source terms in a dispersion model are jointly estimated. The algorithm is validated using model-generated output and field observations and can benefit atmospheric researchers who need to estimate tracer transport uncertainty.
Monte Carlo ensemble simulations, Bayesian inversion, and machine learning are used to quantify...
Citation