Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 17, issue 22
Atmos. Chem. Phys., 17, 13521–13543, 2017
https://doi.org/10.5194/acp-17-13521-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 13521–13543, 2017
https://doi.org/10.5194/acp-17-13521-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Nov 2017

Research article | 15 Nov 2017

Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant

Donald D. Lucas et al.

Related authors

Designing optimal greenhouse gas observing networks that consider performance and cost
D. D. Lucas, C. Yver Kwok, P. Cameron-Smith, H. Graven, D. Bergmann, T. P. Guilderson, R. Weiss, and R. Keeling
Geosci. Instrum. Method. Data Syst., 4, 121–137, https://doi.org/10.5194/gi-4-121-2015,https://doi.org/10.5194/gi-4-121-2015, 2015
Short summary
Failure analysis of parameter-induced simulation crashes in climate models
D. D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon, D. Domyancic, and Y. Zhang
Geosci. Model Dev., 6, 1157–1171, https://doi.org/10.5194/gmd-6-1157-2013,https://doi.org/10.5194/gmd-6-1157-2013, 2013

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ozone pollution over China and India: seasonality and sources
Meng Gao, Jinhui Gao, Bin Zhu, Rajesh Kumar, Xiao Lu, Shaojie Song, Yuzhong Zhang, Beixi Jia, Peng Wang, Gufran Beig, Jianlin Hu, Qi Ying, Hongliang Zhang, Peter Sherman, and Michael B. McElroy
Atmos. Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020,https://doi.org/10.5194/acp-20-4399-2020, 2020
Short summary
Influences of oceanic ozone deposition on tropospheric photochemistry
Ryan J. Pound, Tomás Sherwen, Detlev Helmig, Lucy J. Carpenter, and Mat J. Evans
Atmos. Chem. Phys., 20, 4227–4239, https://doi.org/10.5194/acp-20-4227-2020,https://doi.org/10.5194/acp-20-4227-2020, 2020
Short summary
Investigating the regional contributions to air pollution in Beijing: a dispersion modelling study using CO as a tracer
Marios Panagi, Zoë L. Fleming, Paul S. Monks, Matthew J. Ashfold, Oliver Wild, Michael Hollaway, Qiang Zhang, Freya A. Squires, and Joshua D. Vande Hey
Atmos. Chem. Phys., 20, 2825–2838, https://doi.org/10.5194/acp-20-2825-2020,https://doi.org/10.5194/acp-20-2825-2020, 2020
Short summary
Evaluation of NU-WRF model performance on air quality simulation under various model resolutions – an investigation within the framework of MICS-Asia Phase III
Zhining Tao, Mian Chin, Meng Gao, Tom Kucsera, Dongchul Kim, Huisheng Bian, Jun-ichi Kurokawa, Yuesi Wang, Zirui Liu, Gregory R. Carmichael, Zifa Wang, and Hajime Akimoto
Atmos. Chem. Phys., 20, 2319–2339, https://doi.org/10.5194/acp-20-2319-2020,https://doi.org/10.5194/acp-20-2319-2020, 2020
Short summary
Urban canopy meteorological forcing and its impact on ozone and PM2.5: role of vertical turbulent transport
Peter Huszar, Jan Karlický, Jana Ďoubalová, Kateřina Šindelářová, Tereza Nováková, Michal Belda, Tomáš Halenka, Michal Žák, and Petr Pišoft
Atmos. Chem. Phys., 20, 1977–2016, https://doi.org/10.5194/acp-20-1977-2020,https://doi.org/10.5194/acp-20-1977-2020, 2020
Short summary

Cited articles

Albergel, A., Martin, D., Strauss, B., and Gros, J. M.: The Chernobyl accident: Modelling of dispersion over europe of the radioactive plume and comparison with air activity measurements, Atmos. Environ., 22, 2431–2444, https://doi.org/10.1016/0004-6981(88)90475-1, 1988.
An, X., Yao, B., Li, Y., Li, N., and Zhou, L.: Tracking source area of Shangdianzi station using Lagrangian particle dispersion model of FLEXPART, Meteorol. Appl., 21, 466–473, https://doi.org/10.1002/met.1358, 2014.
Andreev, I., Hittenberger, M., Hofer, P., Kromp-Kolb, H., Kromp, W., Seibert, P., and Wotawa, G.: Risks due to beyond design base accidents of nuclear power plants in Europe the methodology of riskmap, J. Hazard. Mater., 61, 257–262, https://doi.org/10.1016/S0304-3894(98)00130-7, 1998.
Athey, G. F., Fosmire, C., Mohseni, A., Ramsdell, J., and Sjoreen, A.: Radiological Assessment System for Consequence Analysis (RASCAL) Version 3.0, American Nuclear Society, 1999.
Avey, L., Garrett, T. J., and Stohl, A.: Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation, J. Geophys. Res.-Atmos., 112, D10S33, https://doi.org/10.1029/2006JD007581, 2007.
Publications Copernicus
Download
Short summary
Monte Carlo ensemble simulations, Bayesian inversion, and machine learning are used to quantify uncertainty in the atmospheric transport and emissions of a controlled tracer released from a nuclear power plant. Uncertainty of different settings in a weather model and source terms in a dispersion model are jointly estimated. The algorithm is validated using model-generated output and field observations and can benefit atmospheric researchers who need to estimate tracer transport uncertainty.
Monte Carlo ensemble simulations, Bayesian inversion, and machine learning are used to quantify...
Citation