Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 22 | Copyright
Atmos. Chem. Phys., 17, 13521-13543, 2017
https://doi.org/10.5194/acp-17-13521-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Nov 2017

Research article | 15 Nov 2017

Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant

Donald D. Lucas, Matthew Simpson, Philip Cameron-Smith, and Ronald L. Baskett Donald D. Lucas et al.
  • Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Abstract. Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine-learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine-learning algorithms are trained on the ensemble data and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 103), most of which is due to changing emissions inputs (about 80%), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the inverse method satisfactorily determines the location, start time, duration and amount. In a 2 km × 2 km area of possible locations, the actual location is determined to within 200m. The start time is determined to within 5min out of 2h, and the duration to within 50min out of 4h. Over a range of release amounts of 10 to 1000kg, the estimated amount exceeds the actual amount of 146kg by only 32kg. The inversion also estimates probabilities of different WRF configurations. To best match the tracer observations, the highest-probability cases in WRF are associated with using a late initialization time and specific reanalysis data products.

Download & links
Publications Copernicus
Download
Short summary
Monte Carlo ensemble simulations, Bayesian inversion, and machine learning are used to quantify uncertainty in the atmospheric transport and emissions of a controlled tracer released from a nuclear power plant. Uncertainty of different settings in a weather model and source terms in a dispersion model are jointly estimated. The algorithm is validated using model-generated output and field observations and can benefit atmospheric researchers who need to estimate tracer transport uncertainty.
Monte Carlo ensemble simulations, Bayesian inversion, and machine learning are used to quantify...
Citation
Share