Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 17, issue 22
Atmos. Chem. Phys., 17, 13509–13520, 2017
https://doi.org/10.5194/acp-17-13509-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 13509–13520, 2017
https://doi.org/10.5194/acp-17-13509-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Nov 2017

Research article | 14 Nov 2017

Stochastic coalescence in Lagrangian cloud microphysics

Piotr Dziekan and Hanna Pawlowska
Related authors  
Lagrangian condensation microphysics with Twomey CCN activation
Wojciech W. Grabowski, Piotr Dziekan, and Hanna Pawlowska
Geosci. Model Dev., 11, 103–120, https://doi.org/10.5194/gmd-11-103-2018,https://doi.org/10.5194/gmd-11-103-2018, 2018
Short summary
Related subject area  
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes
Jan Kretzschmar, Marc Salzmann, Johannes Mülmenstädt, and Johannes Quaas
Atmos. Chem. Phys., 19, 10571–10589, https://doi.org/10.5194/acp-19-10571-2019,https://doi.org/10.5194/acp-19-10571-2019, 2019
Short summary
An emulator approach to stratocumulus susceptibility
Franziska Glassmeier, Fabian Hoffmann, Jill S. Johnson, Takanobu Yamaguchi, Ken S. Carslaw, and Graham Feingold
Atmos. Chem. Phys., 19, 10191–10203, https://doi.org/10.5194/acp-19-10191-2019,https://doi.org/10.5194/acp-19-10191-2019, 2019
Short summary
Response of Arctic mixed-phase clouds to aerosol perturbations under different surface forcings
Gesa K. Eirund, Anna Possner, and Ulrike Lohmann
Atmos. Chem. Phys., 19, 9847–9864, https://doi.org/10.5194/acp-19-9847-2019,https://doi.org/10.5194/acp-19-9847-2019, 2019
Short summary
Elucidating ice formation pathways in the aerosol–climate model ECHAM6-HAM2
Remo Dietlicher, David Neubauer, and Ulrike Lohmann
Atmos. Chem. Phys., 19, 9061–9080, https://doi.org/10.5194/acp-19-9061-2019,https://doi.org/10.5194/acp-19-9061-2019, 2019
Short summary
Arctic cloud annual cycle biases in climate models
Patrick C. Taylor, Robyn C. Boeke, Ying Li, and David W. J. Thompson
Atmos. Chem. Phys., 19, 8759–8782, https://doi.org/10.5194/acp-19-8759-2019,https://doi.org/10.5194/acp-19-8759-2019, 2019
Short summary
Cited articles  
Alfonso, L.: An algorithm for the numerical solution of the multivariate master equation for stochastic coalescence, Atmos. Chem. Phys., 15, 12315–12326, https://doi.org/10.5194/acp-15-12315-2015, 2015.
Alfonso, L. and Raga, G. B.: The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution, Atmos. Chem. Phys., 17, 6895–6905, https://doi.org/10.5194/acp-17-6895-2017, 2017.
Andrejczuk, M., Reisner, J., Henson, B., Dubey, M., and Jeffery, C.: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?, J. Geophys. Res.-Atmos., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008.
Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: libcloudph+ +  1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C+ + , Geosci. Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-2015, 2015.
Bayewitz, M. H., Yerushalmi, J., Katz, S., and Shinnar, R.: The extent of correlations in a stochastic coalescence process, J. Atmos. Sci., 31, 1604–1614, 1974.
Publications Copernicus
Download
Short summary
Raindrops form when small cloud droplets collide with each other. In most computer models of clouds, this process is described using the Smoluchowski equation. We compare the Smoluchowski equation with computer simulations in which each droplet within a small part of the cloud is modeled. We show, depending on the simulation setup, that the Smoluchowski equation can give overly slow or fast rain formation. This implies that many cloud models used do not correctly represent rain formation.
Raindrops form when small cloud droplets collide with each other. In most computer models of...
Citation