Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 17, issue 22
Atmos. Chem. Phys., 17, 13509–13520, 2017
https://doi.org/10.5194/acp-17-13509-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 13509–13520, 2017
https://doi.org/10.5194/acp-17-13509-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Nov 2017

Research article | 14 Nov 2017

Stochastic coalescence in Lagrangian cloud microphysics

Piotr Dziekan and Hanna Pawlowska
Related authors  
Lagrangian condensation microphysics with Twomey CCN activation
Wojciech W. Grabowski, Piotr Dziekan, and Hanna Pawlowska
Geosci. Model Dev., 11, 103–120, https://doi.org/10.5194/gmd-11-103-2018,https://doi.org/10.5194/gmd-11-103-2018, 2018
Short summary
Related subject area  
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Water vapour adjustments and responses differ between climate drivers
Øivind Hodnebrog, Gunnar Myhre, Bjørn H. Samset, Kari Alterskjær, Timothy Andrews, Olivier Boucher, Gregory Faluvegi, Dagmar Fläschner, Piers M. Forster, Matthew Kasoar, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas B. Richardson, Dilshad Shawki, Drew Shindell, Keith P. Shine, Philip Stier, Toshihiko Takemura, Apostolos Voulgarakis, and Duncan Watson-Parris
Atmos. Chem. Phys., 19, 12887–12899, https://doi.org/10.5194/acp-19-12887-2019,https://doi.org/10.5194/acp-19-12887-2019, 2019
Short summary
Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)
Keith M. Hines, David H. Bromwich, Sheng-Hung Wang, Israel Silber, Johannes Verlinde, and Dan Lubin
Atmos. Chem. Phys., 19, 12431–12454, https://doi.org/10.5194/acp-19-12431-2019,https://doi.org/10.5194/acp-19-12431-2019, 2019
Short summary
Relative impact of aerosol, soil moisture, and orography perturbations on deep convection
Linda Schneider, Christian Barthlott, Corinna Hoose, and Andrew I. Barrett
Atmos. Chem. Phys., 19, 12343–12359, https://doi.org/10.5194/acp-19-12343-2019,https://doi.org/10.5194/acp-19-12343-2019, 2019
Short summary
Core and margin in warm convective clouds – Part 1: Core types and evolution during a cloud's lifetime
Reuven H. Heiblum, Lital Pinto, Orit Altaratz, Guy Dagan, and Ilan Koren
Atmos. Chem. Phys., 19, 10717–10738, https://doi.org/10.5194/acp-19-10717-2019,https://doi.org/10.5194/acp-19-10717-2019, 2019
Short summary
Core and margin in warm convective clouds – Part 2: Aerosol effects on core properties
Reuven H. Heiblum, Lital Pinto, Orit Altaratz, Guy Dagan, and Ilan Koren
Atmos. Chem. Phys., 19, 10739–10755, https://doi.org/10.5194/acp-19-10739-2019,https://doi.org/10.5194/acp-19-10739-2019, 2019
Short summary
Cited articles  
Alfonso, L.: An algorithm for the numerical solution of the multivariate master equation for stochastic coalescence, Atmos. Chem. Phys., 15, 12315–12326, https://doi.org/10.5194/acp-15-12315-2015, 2015.
Alfonso, L. and Raga, G. B.: The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution, Atmos. Chem. Phys., 17, 6895–6905, https://doi.org/10.5194/acp-17-6895-2017, 2017.
Andrejczuk, M., Reisner, J., Henson, B., Dubey, M., and Jeffery, C.: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?, J. Geophys. Res.-Atmos., 113, D19204, https://doi.org/10.1029/2007JD009445, 2008.
Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: libcloudph+ +  1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C+ + , Geosci. Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-2015, 2015.
Bayewitz, M. H., Yerushalmi, J., Katz, S., and Shinnar, R.: The extent of correlations in a stochastic coalescence process, J. Atmos. Sci., 31, 1604–1614, 1974.
Publications Copernicus
Download
Short summary
Raindrops form when small cloud droplets collide with each other. In most computer models of clouds, this process is described using the Smoluchowski equation. We compare the Smoluchowski equation with computer simulations in which each droplet within a small part of the cloud is modeled. We show, depending on the simulation setup, that the Smoluchowski equation can give overly slow or fast rain formation. This implies that many cloud models used do not correctly represent rain formation.
Raindrops form when small cloud droplets collide with each other. In most computer models of...
Citation