Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 17, issue 2
Atmos. Chem. Phys., 17, 1343–1359, 2017
https://doi.org/10.5194/acp-17-1343-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 1343–1359, 2017
https://doi.org/10.5194/acp-17-1343-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Jan 2017

Research article | 30 Jan 2017

Qualitative and quantitative analysis of atmospheric organosulfates in Centreville, Alabama

Anusha P. S. Hettiyadura1, Thilina Jayarathne1, Karsten Baumann2, Allen H. Goldstein3,4, Joost A. de Gouw5, Abigail Koss5, Frank N. Keutsch6,a, Kate Skog6,b, and Elizabeth A. Stone1 Anusha P. S. Hettiyadura et al.
  • 1Department of Chemistry, University of Iowa, Iowa City, IA, USA
  • 2Atmospheric Research & Analysis, Inc., Cary, NC, USA
  • 3Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
  • 4Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
  • 5Chemical Sciences Division, Earth System Research Laboratory, National Oceanic & Atmospheric Administration, Boulder, CO, USA
  • 6Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
  • anow at: School of Engineering and Applied Sciences and Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
  • bnow at: Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, USA

Abstract. Organosulfates are components of secondary organic aerosols (SOA) that form from oxidation of volatile organic compounds (VOCs) in the presence of sulfate. In this study, the composition and abundance of organosulfates were determined in fine particulate matter (PM2.5) collected from Centreville, AL, during the Southern Oxidant and Aerosol Study (SOAS) in summer 2013. Six organosulfates were quantified using hydrophilic interaction liquid chromatography (HILIC) with triple quadrupole mass spectrometry (TQD) against authentic standards. Among these, the three most abundant species were glycolic acid sulfate (0.5–52.5 ng m−3), lactic acid sulfate (0.5–36.7 ng m−3), and hydroxyacetone sulfate (0.5–14.3 ng m−3). These three species were strongly inter-correlated, suggesting similar precursors and/or formation pathways. Further correlations with sulfate, isoprene, and isoprene oxidation products indicate important roles for these precursors in organosulfate formation in Centreville. Positive filter sampling artifacts associated with these organosulfates due to gas adsorption or reaction of gas phase precursors of organosulfates with sulfuric acid were assessed for a subset of samples and were less than 7.8 % of their PM2.5 concentrations. Together, the quantified organosulfates accounted for  <  0.3 % of organic carbon mass in PM2.5. To gain insights into other organosulfates in PM2.5 collected from Centreville, semi-quantitative analysis was employed by way of monitoring characteristic product ions of organosulfates (HSO4 at mz 97 and SO4− ⋅  at mz 96) and evaluating relative signal strength by HILIC–TQD. Molecular formulas of organosulfates were determined by high-resolution time-of-flight (TOF) mass spectrometry. The major organosulfate signal across all samples corresponded to 2-methyltetrol sulfates, which accounted for 42–62 % of the total bisulfate ion signal. Conversely, glycolic acid sulfate, the most abundant organosulfate quantified in this study, was 0.13–0.57 % of the total bisulfate ion signal. Precursors of mz 96 mainly consisted of nitro-oxy organosulfates. Organosulfates identified were mainly associated with biogenic VOC precursors, particularly isoprene and to a lesser extent monoterpenes and 2-methyl-3-buten-2-ol (MBO). While a small number of molecules dominated the total organosulfate signal, a large number of minor species were also present. This study provides insights into the major organosulfate species in the southeastern US, as measured by tandem mass spectrometry that should be targets for future standard development and quantitative analysis.

Publications Copernicus
Download
Short summary
Organosulfates are components of secondary organic aerosol (SOA) formed in the presence of sulfate. Herein, their abundance, identity, and potential to form as sampling artifacts were studied in Centreville, AL, USA. The 10 most abundant signals accounted for 58–78 % of the total, with at least 20–200 other species accounting for the remainder. These major species were largely associated with biogenic gases, like isoprene and monoterpenes, and are proposed targets for future standard development.
Organosulfates are components of secondary organic aerosol (SOA) formed in the presence of...
Citation