Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 17, issue 21
Atmos. Chem. Phys., 17, 13417–13438, 2017
https://doi.org/10.5194/acp-17-13417-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 17, 13417–13438, 2017
https://doi.org/10.5194/acp-17-13417-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Nov 2017

Research article | 10 Nov 2017

Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation

Robert C. Rhew et al.

Related authors

Emission of volatile halogenated organic compounds over various Dead Sea landscapes
Moshe Shechner, Alex Guenther, Robert Rhew, Asher Wishkerman, Qian Li, Donald Blake, Gil Lerner, and Eran Tas
Atmos. Chem. Phys., 19, 7667–7690, https://doi.org/10.5194/acp-19-7667-2019,https://doi.org/10.5194/acp-19-7667-2019, 2019
Short summary
Model sensitivity studies of the decrease in atmospheric carbon tetrachloride
Martyn P. Chipperfield, Qing Liang, Matthew Rigby, Ryan Hossaini, Stephen A. Montzka, Sandip Dhomse, Wuhu Feng, Ronald G. Prinn, Ray F. Weiss, Christina M. Harth, Peter K. Salameh, Jens Mühle, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Paul B. Krummel, Paul J. Fraser, L. Paul Steele, James D. Happell, Robert C. Rhew, James Butler, Shari A. Yvon-Lewis, Bradley Hall, David Nance, Fred Moore, Ben R. Miller, James W. Elkins, Jeremy J. Harrison, Chris D. Boone, Elliot L. Atlas, and Emmanuel Mahieu
Atmos. Chem. Phys., 16, 15741–15754, https://doi.org/10.5194/acp-16-15741-2016,https://doi.org/10.5194/acp-16-15741-2016, 2016
Short summary
Large methyl halide emissions from south Texas salt marshes
R. C. Rhew, M. E. Whelan, and D.-H. Min
Biogeosciences, 11, 6427–6434, https://doi.org/10.5194/bg-11-6427-2014,https://doi.org/10.5194/bg-11-6427-2014, 2014
Short summary

Related subject area

Subject: Biosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Significant emissions of dimethyl sulfide and monoterpenes by big-leaf mahogany trees: discovery of a missing dimethyl sulfide source to the atmospheric environment
Lejish Vettikkat, Vinayak Sinha, Savita Datta, Ashish Kumar, Haseeb Hakkim, Priya Yadav, and Baerbel Sinha
Atmos. Chem. Phys., 20, 375–389, https://doi.org/10.5194/acp-20-375-2020,https://doi.org/10.5194/acp-20-375-2020, 2020
Short summary
Plant assemblages in atmospheric deposition
Ke Dong, Cheolwoon Woo, and Naomichi Yamamoto
Atmos. Chem. Phys., 19, 11969–11983, https://doi.org/10.5194/acp-19-11969-2019,https://doi.org/10.5194/acp-19-11969-2019, 2019
Short summary
Emission of trace gases and aerosols from biomass burning – an updated assessment
Meinrat O. Andreae
Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019,https://doi.org/10.5194/acp-19-8523-2019, 2019
Short summary
Investigation of coastal sea-fog formation using the WIBS (wideband integrated bioaerosol sensor) technique
Shane M. Daly, David J. O'Connor, David A. Healy, Stig Hellebust, Jovanna Arndt, Eoin J. McGillicuddy, Patrick Feeney, Michael Quirke, John C. Wenger, and John R. Sodeau
Atmos. Chem. Phys., 19, 5737–5751, https://doi.org/10.5194/acp-19-5737-2019,https://doi.org/10.5194/acp-19-5737-2019, 2019
Short summary
Soil–atmosphere exchange of carbonyl sulfide in a Mediterranean citrus orchard
Fulin Yang, Rafat Qubaja, Fyodor Tatarinov, Rafael Stern, and Dan Yakir
Atmos. Chem. Phys., 19, 3873–3883, https://doi.org/10.5194/acp-19-3873-2019,https://doi.org/10.5194/acp-19-3873-2019, 2019
Short summary

Cited articles

Abeles, F., Morgan, P., and Saltveit Jr., M.: Ethylene in Plant Biology, 2nd Edn., Academic Press, San Diego, 414 pp., 2012.
Atkinson, R., Aschmann, S. M., and Pitts, J. N.: Rate constants for the gas-phase reactions of the OH radical with a series of monoterpenes at 294 ± 1 K, Int. J. Chem. Kinet., 18, 287–299, 1986.
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F. J., Kerr, J. A., Rossi, M. J., and Troe, J.: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: Supplement V. – IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J. Phys. Chem. Ref. Data, 26, 521–1011, https://doi.org/10.1063/1.556011, 1997.
Baker, B., Guenther, A., Greenberg, J., and Fall, R.: Canopy level fluxes of 2-methyl-3-buten-2-ol, acetone, and methanol by a portable relaxed eddy accumulation system, Environ. Sci. Technol., 35, 1701–1708, https://doi.org/10.1021/es001007j, 2001.
Baker, J. M.: Conditional sampling revisited, Agr. Forest Meteorol., 104, 59–65, 2000.
Publications Copernicus
Download
Short summary
Alkenes emanate from both natural and anthropogenic sources and can contribute to atmospheric ozone production. This study measured light alkene (ethene, propene and butene) fluxes from a ponderosa pine forest using a novel relaxed eddy accumulation method, revealing much larger emissions than previously estimated and accounting for a significant fraction of OH reactivity. Emissions have a diurnal cycle related to sunlight and temperature, and the forest canopy appears to be the source.
Alkenes emanate from both natural and anthropogenic sources and can contribute to atmospheric...
Citation