Articles | Volume 17, issue 21
https://doi.org/10.5194/acp-17-13213-2017
https://doi.org/10.5194/acp-17-13213-2017
Research article
 | 
08 Nov 2017
Research article |  | 08 Nov 2017

The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island

Lei Zhu, Zhiyong Meng, Fuqing Zhang, and Paul M. Markowski

Related authors

Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution
Xingchao Chen, Olivier M. Pauluis, and Fuqing Zhang
Atmos. Chem. Phys., 18, 1003–1022, https://doi.org/10.5194/acp-18-1003-2018,https://doi.org/10.5194/acp-18-1003-2018, 2018
Short summary
Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment
Fuqing Zhang, Junhong Wei, Meng Zhang, K. P. Bowman, L. L. Pan, E. Atlas, and S. C. Wofsy
Atmos. Chem. Phys., 15, 7667–7684, https://doi.org/10.5194/acp-15-7667-2015,https://doi.org/10.5194/acp-15-7667-2015, 2015
Short summary
Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains
Yuanchun Zhang, Fuqing Zhang, and Jianhua Sun
Atmos. Chem. Phys., 14, 10741–10759, https://doi.org/10.5194/acp-14-10741-2014,https://doi.org/10.5194/acp-14-10741-2014, 2014
Environmental influences on the intensity changes of tropical cyclones over the western North Pacific
Shoujuan Shu, Fuqing Zhang, Jie Ming, and Yuan Wang
Atmos. Chem. Phys., 14, 6329–6342, https://doi.org/10.5194/acp-14-6329-2014,https://doi.org/10.5194/acp-14-6329-2014, 2014

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus
Peter Spichtinger, Patrik Marschalik, and Manuel Baumgartner
Atmos. Chem. Phys., 23, 2035–2060, https://doi.org/10.5194/acp-23-2035-2023,https://doi.org/10.5194/acp-23-2035-2023, 2023
Short summary
Temperature and cloud condensation nuclei (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase seeder–feeder mechanism: a case study for the 2015 Cumbria flood
Julia Thomas, Andrew Barrett, and Corinna Hoose
Atmos. Chem. Phys., 23, 1987–2002, https://doi.org/10.5194/acp-23-1987-2023,https://doi.org/10.5194/acp-23-1987-2023, 2023
Short summary
Aerosol–precipitation elevation dependence over the central Himalayas using cloud-resolving WRF-Chem numerical modeling
Pramod Adhikari and John F. Mejia
Atmos. Chem. Phys., 23, 1019–1042, https://doi.org/10.5194/acp-23-1019-2023,https://doi.org/10.5194/acp-23-1019-2023, 2023
Short summary
Machine learning of cloud types in satellite observations and climate models
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023,https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary
A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023,https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary

Cited articles

Bao, X. and Zhang, F.: Impacts of the mountain–plains solenoid and cold pool dynamics on the diurnal variation of warm-season precipitation over northern China, Atmos. Chem. Phys., 13, 6965–6982, https://doi.org/10.5194/acp-13-6965-2013, 2013.
Bao, X., Zhang, F., and Sun, J.: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China, Mon. Weather Rev., 139, 2790–2810, 2011.
Barthlott, C. and Kirshbaum, D. J.: Sensitivity of deep convection to terrain forcing over Mediterranean islands, Q. J. Roy. Meteor. Soc., 139, 1762–1779, 2013.
Chen, X., Zhang, F., and Zhao, K.: Diurnal variations of the land–sea breeze and its related precipitation over South China, J. Atmos. Sci., 73, 4793–4815, 2016.
Chen, X., Zhang, F., and Zhao, K.: Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Mei-yu season coastal rainfall over South China, J. Atmos. Sci., in press, https://doi.org/10.1175/JAS-D-17-0081.1, 2017.
Download
Short summary
This work shows a strong diurnal rainfall cycle over Hainan island due to land–sea breeze circulations. Years of gauge and CMORPH rainfall datasets were examined. More than 60 % of the total annual precipitation is attributable to the diurnal cycle. The multistage dynamics of the diurnal rainfall cycle and the related land–sea breeze circulations were analyzed based on WRF simulations. The rather high island orography is not a dominant factor in the diurnal variation of rainfall over the island.
Altmetrics
Final-revised paper
Preprint