Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 17, 12327-12340, 2017
https://doi.org/10.5194/acp-17-12327-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
17 Oct 2017
Aerosol surface area concentration: a governing factor in new particle formation in Beijing
Runlong Cai1,*, Dongsen Yang2,*, Yueyun Fu1, Xing Wang2, Xiaoxiao Li1, Yan Ma2, Jiming Hao1, Jun Zheng2, and Jingkun Jiang1 1State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
2Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
*These authors contributed equally to this work.
Abstract. The predominating role of aerosol Fuchs surface area, AFuchs, in determining the occurrence of new particle formation (NPF) events in Beijing was elucidated in this study. The analysis was based on a field campaign from 12 March to 6 April 2016 in Beijing, during which aerosol size distributions down to  ∼  1 nm and sulfuric acid concentrations were simultaneously monitored. The 26 days were classified into 11 typical NPF days, 2 undefined days, and 13 non-event days. A dimensionless factor, LΓ, characterized by the relative ratio of the coagulation scavenging rate over the condensational growth rate (Kuang et al., 2010), was applied in this work to reveal the governing factors for NPF events in Beijing. The three parameters determining LΓ are sulfuric acid concentration, the growth enhancement factor characterized by contribution of other gaseous precursors to particle growth, Γ, and AFuchs. Different from other atmospheric environments, such as in Boulder and Hyytiälä, the daily-maximum sulfuric acid concentration and Γ in Beijing varied in a narrow range with geometric standard deviations of 1.40 and 1.31, respectively. A positive correlation between the estimated new particle formation rate, J1.5, and sulfuric acid concentration was found with a mean fitted exponent of 2.4. However, the maximum sulfuric acid concentrations on NPF days were not significantly higher (even lower, sometimes) than those on non-event days, indicating that the abundance of sulfuric acid in Beijing was high enough to initiate nucleation, but may not necessarily lead to NPF events. Instead, AFuchs in Beijing varied greatly among days with a geometric standard deviation of 2.56, whereas the variabilities of AFuchs in Tecamac, Atlanta, and Boulder were reported to be much smaller. In addition, there was a good correlation between AFuchs and LΓ in Beijing (R2 = 0.88). Therefore, it was AFuchs that fundamentally determined the occurrence of NPF events. Among 11 observed NPF events, 10 events occurred when AFuchs was smaller than 200 µm2 cm−3. NPF events were suppressed due to the coagulation scavenging when AFuchs was greater than 200 µm2 cm−3. Measured AFuchs in Beijing had a good correlation with its PM2.5 mass concentration (R2 = 0.85) since AFuchs in Beijing was mainly determined by particles in the size range of 50–500 nm that also contribute to the PM2.5 mass concentration.

Citation: Cai, R., Yang, D., Fu, Y., Wang, X., Li, X., Ma, Y., Hao, J., Zheng, J., and Jiang, J.: Aerosol surface area concentration: a governing factor in new particle formation in Beijing, Atmos. Chem. Phys., 17, 12327-12340, https://doi.org/10.5194/acp-17-12327-2017, 2017.
Publications Copernicus
Download
Short summary
The governing factors for new particle formation (NPF) events in Beijing were analyzed. The roles of gaseous precursors and aerosol surface area were illustrated. It appears that the abundance of gaseous precursors in Beijing is high enough to have nucleation; however, it is aerosol surface area that determines the occurrence of NPF events in Beijing. Aerosol loading thresholds (in the form of aerosol surface area and PM2.5 concentration) for predicting NPF days in Beijing were suggested.
The governing factors for new particle formation (NPF) events in Beijing were analyzed. The...
Share