IASI-derived NH$_3$ enhancement ratios relative to CO for the tropical biomass burning regions

Simon Whitburn1, Martin Van Damme1, Lieven Clarisse1, Daniel Hurtmans1, Cathy Clerbaux1,2, and Pierre-François Coheur1

1Université Libre de Bruxelles (ULB), Atmospheric Spectroscopy, Service de Chimie Quantique et Photophysique CP160/09, Avenue F. D. Roosevelt 50, 1050 Bruxelles, Belgium

2LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris, France

Correspondence to: Simon Whitburn (simon.whitburn@ulb.ac.be)

Received: 8 April 2017 – Discussion started: 4 May 2017

Revised: 7 August 2017 – Accepted: 7 September 2017 – Published: 13 October 2017

Abstract. Vegetation fires are a major source of ammonia (NH$_3$) in the atmosphere. Their emissions are mainly estimated using bottom-up approaches that rely on uncertain emission factors. In this study, we derive new biome-specific NH$_3$ enhancement ratios relative to carbon monoxide (CO), ER$_{\text{NH}_3/\text{CO}}$ (directly related to the emission factors), from the measurements of the IASI sounder onboard the Metop-A satellite. This is achieved for large tropical regions and for an 8-year period (2008–2015). We find substantial differences in the ER$_{\text{NH}_3/\text{CO}}$ ratios between the biomes studied, with calculated values ranging from 7×10^{-3} to 23×10^{-3}.

For evergreen broadleaf forest these are typically 50–75 % higher than for woody savanna and savanna biomes. This variability is attributed to differences in fuel types and size and is in line with previous studies. The analysis of the spatial and temporal distribution of the ER$_{\text{NH}_3/\text{CO}}$ ratio also reveals a (sometimes large) within-biome variability. On a regional level, woody savanna shows, for example, a mean ER$_{\text{NH}_3/\text{CO}}$ ratio for the region of Africa south of the Equator that is 40–75 % lower than in the other five regions studied, probably reflecting regional differences in fuel type and burning conditions. The same variability is also observed on a yearly basis, with a peak in the ER$_{\text{NH}_3/\text{CO}}$ ratio observed for the year 2010 for all biomes. These results highlight the need for the development of dynamic emission factors that take into better account local variations in fuel type and fire conditions. We also compare the IASI-derived ER$_{\text{NH}_3/\text{CO}}$ ratio with values reported in the literature, usually calculated from ground-based or airborne measurements. We find general good agreement in the referenced ER$_{\text{NH}_3/\text{CO}}$ ratio except for cropland, for which the ER$_{\text{NH}_3/\text{CO}}$ ratio shows an underestimation of about 2–2.5 times.

1 Introduction

Vegetation fires contribute significantly to the global budget of many trace gases and aerosols in the atmosphere (Langmann et al., 2009). Carbon dioxide (CO$_2$) emissions from biomass burning are, for example, estimated to be about 2–4 Pg C yr$^{-1}$ compared to 7.2 Pg C yr$^{-1}$ from fossil fuel combustion (Bowman et al., 2009). For carbon monoxide (CO), the contribution to the total budget could even reach more than 50 % (Crutzen and Andreae, 1990; van der Werf et al., 2004, 2010). In addition to carbon, vegetation fires also emit large amounts of reactive nitrogen species, of which ammonia (NH$_3$) is one. With a contribution estimated to be about 13 % (Galloway et al., 2004) of the total emissions, biomass burning is believed to be the second most important source of NH$_3$ after agriculture. From previous studies, it has been shown that biomass burning could significantly affect NH$_3$ concentrations in the atmosphere, especially in the tropics but also at higher latitudes (e.g., Bouwman et al., 1997; Coheur et al., 2009; Adon et al., 2010; Alvarado et al., 2011; Shephard et al., 2011; Adon et al., 2013; R’Hon et al., 2013; Whitburn et al., 2015, 2016a; Benedict et al., 2017; Warner et al., 2017). Excess NH$_3$ in the environment is of great concern since it is responsible for many environmental is-
sues such as eutrophication of terrestrial and aquatic ecosystems, soil acidification, and loss of plant diversity (Aneja et al., 2001; Erismann et al., 2007). As the dominant alkaline species in the atmosphere, NH$_3$ rapidly combines with acid gases such as sulfuric acid (H$_2$SO$_4$), nitric acid (HNO$_3$), and hydrochloric acid (HCl), resulting in the formation of secondary aerosols that in turn impact climate and human health (Bouwman et al., 1997; Aneja et al., 2001; Sutton et al., 2011; Behera et al., 2013; Lelieveld et al., 2015).

Until recently, most models of fire emissions were based on bottom-up approaches that rely on an estimation of the total burned biomass (BB, kg) combined with biome-specific emission factors (EFs), expressed as the mass of pollutant emitted per kilogram of BB (g kg$^{-1}$ BB). Despite the numerous studies performed in the past decades (e.g., Sinha et al., 2003; Yokelson et al., 2003; van der Werf et al., 2010; Wooster et al., 2011; Smith et al., 2014), the uncertainty on all parameters of these models remains large. This is especially true for EFs, which have a typical uncertainty of the order of 20–30% for frequently measured species (e.g., CO, CO$_2$) and up to 100% for species such as NH$_3$ that are not so well monitored (Langmann et al., 2009; Akagi et al., 2011). An accurate determination of the EFs is challenging, partly because of the existence of a within-biome spatial and seasonal variability (van Leeuwen and van der Werf, 2011; Yokelson et al., 2011; Meyer et al., 2012; Mebust and Cohen, 2013; van Leeuwen et al., 2013; Castellanos et al., 2014; Schreier et al., 2014a). This variability is attributed to differences in fuel type and burning conditions, the latter being itself controlled by climate, weather, moisture content, topography, and fire practices (Andreae and Merlet, 2001; Korontzi et al., 2003; Yokelson et al., 2011; van Leeuwen and van der Werf, 2011; Castellanos et al., 2014). For nitrogen compounds, another main factor controlling the EFs is the nitrogen content of the fuel (Andreae and Merlet, 2001; Jaffe and Wigder, 2012; Castellanos et al., 2014). Because it is generally not known to what extent EFs are based on a representative sample of a specific vegetation type (van Leeuwen and van der Werf, 2011; Castellanos et al., 2014), the spatial and temporal variability in the EFs is not usually taken into account in the bottom-up approaches in which EFs are taken from compilations of airborne and local measurements or from small fires burned under laboratory conditions (e.g., Andreae and Merlet, 2001; Akagi et al., 2011).

With their excellent spatial and temporal coverage, hyperspectral sounders onboard satellites, directly measuring tropospheric concentration of trace gases in the atmosphere, offer a unique opportunity to determine EFs more accurately and to capture their variability in time and space. Today, the focus is principally on CO, nitrogen dioxide (NO$_2$), and aerosols (e.g., Pechony et al., 2013; Castellanos et al., 2014; Ichoku and Ellison, 2014; Mebust and Cohen, 2014; Schreier et al., 2014a, b). A recent study was also dedicated to formic acid (HCOOH) (Pommier et al., 2017). Until now, less attention has been given to NH$_3$ (Coheur et al., 2009; Alvarado et al., 2011; R’Honi et al., 2013; Luo et al., 2015). In this paper we derive biome-specific NH$_3$ enhancement ratios (ERs) relative to CO (ER$_{NH_3}/CO$, also known as normalized excess mixing ratios) and relate them to EFs (see Sect. 2.2) over large tropical fire regions and long periods using the measurements of the Infrared Atmospheric Sounding Interferometer (IASI). The use of IASI is particularly suitable here because of its exceptional sampling (compared to other similar instruments, such as the Tropospheric Emission Spectrometer (TES) (Shephard et al., 2011)), and to our knowledge, it is the first time such a study focusing on biomass burning ERs has been carried out for NH$_3$ on this scale. Section 2 briefly describes the datasets used and introduces the methodology for calculating the ERs. It also motivates the selection of the regions studied. The results from our analyses are presented and discussed in Sect. 3, which is further divided into two main parts. The first part analyzes the variability in ER$_{NH_3}/CO$ ratios between and within the different biomes (an extensive comparison with ERs reported in the literature is also provided), while the second part analyzes the interannual and seasonal evolution of ER$_{NH_3}/CO$ ratios. A summary and conclusion are given in Sect. 4.

2 Dataset and method

2.1 Instruments and data products

IASI is a nadir-looking high-resolution Fourier transform spectrometer onboard the polar-orbiting sun-synchronous Metop (Meteorological Operational) satellites. The first two IASI sounders were launched in 2006 and 2012 (Metop-A and -B, respectively). A third instrument is scheduled for launch in 2018 and will ensure at least 18 years of consistent measurements (2006–2023). IASI covers the entire globe twice daily (09:30 and 21:30 LT when crossing the Equator), with a relatively small elliptical footprint on the ground varying from 12 km × 12 km (at nadir) up to 20 km × 39 km (off nadir), depending on the viewing angle (Clerbaux et al., 2009). Its large and continuous spectral coverage of the thermal infrared band region (645–2760 cm$^{-1}$), its medium spectral resolution (0.5 cm$^{-1}$ apodized), and its low instrumental noise (~0.2 K at 950 cm$^{-1}$ and 280 K) make it an invaluable instrument for monitoring atmospheric composition (Clerbaux et al., 2009). CO is retrieved from IASI measurements using the FORLI (Fast Optimal Estimation Retrievals on Layers for IASI) software (Hurtmans et al., 2012), which has been extensively described in Hurtmans et al. (2012). The retrieval of NH$_3$ is based on a new and flexible retrieval algorithm, which relies on the calculation of a so-called hyperspectral range index (HRI) and subsequent conversion to a NH$_3$ total column (molec cm$^{-2}$) using a neural network (Whitburn et al., 2016b). The retrieval also includes a full uncertainty analysis, performed by perturbing the input parameters (temperature profile, HRI, NH$_3$ a pri-
ori profile, etc.) of the neural network. In this paper we use the ANNI-NH$_3$-v2R-1 version of the product, which relies on ERA-Interim ECMWF meteorological input data, along with built-in surface temperature (Van Damme et al., 2017). For a detailed description of the NH$_3$ retrieval methods and the parameters used in the ANNI-NH$_3$-v2R-1 dataset, we refer the reader to Whitburn et al. (2016b) and Van Damme et al. (2017). The validation of FORLI CO profiles and columns has shown good agreement overall using in situ, aircraft, and satellite observations (Pommier et al., 2010; De Wachter et al., 2012; Kerzenmacher et al., 2012; George et al., 2015). For NH$_3$ columns, the validation has started but is more difficult considering the important spatial and temporal variability in NH$_3$ and the scarcity of correlative ground- and airplane-based measurements in many regions of the world (Van Damme et al., 2015). Two studies, based on a previous NH$_3$ retrieval algorithm also using the HRI but relying on two-dimensional look-up tables for the conversion into a NH$_3$ total column (molec cm$^{-2}$) (Van Damme et al., 2014), have shown fair agreement between IASI NH$_3$ observations and other measurements (generally within the uncertainties of the IASI NH$_3$ retrieved columns), with differences of about 60–80% reported in Van Damme et al. (2015) and of 30% on average in Dammers et al. (2016).

This work makes use of 8 years (2008–2015) of daily global NH$_3$ and CO total columns (molec cm$^{-2}$) from the measurements of IASI onboard Metop-A. Only daytime satellite observations have been considered as they usually show a better sensitivity, especially to NH$_3$. We have also assumed a similar sensitivity for IASI to NH$_3$ and CO in the lower layers of the atmosphere. This is not expected to introduce a significant bias since it has been shown for both CO and NH$_3$ that the peak sensitivity was in the lower layers of the atmosphere in case of positive thermal contrast, which generally prevails during daytime in the studied regions (George et al., 2009; Clarisse et al., 2010; Van Damme et al., 2014; Bauduin et al., 2016). A more important bias may result from the use of a unique vertical profile shape in the retrieval scheme of NH$_3$ total columns, which is therefore not representative of the large variety of profiles observed above biomass burning plumes. Whitburn et al. (2016b) have calculated that the use of an alternative profile could affect the retrieved column by up to 50%. This is important to keep in mind for the analyses presented next.

In support of the selection of the studied regions and the NH$_3$ and CO columns, we also used active-fire detection data and nitrogen dioxide (NO$_2$) total columns (molec cm$^{-2}$). Detected active fires are taken from the Global Monthly Fire Location Product (MCD14ML, Level 2, Collection 5) developed by the University of Maryland from the measurements of the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the NASA Terra and Aqua satellites (Justice et al., 2002; Giglio et al., 2006). Active fires are monitored at a resolution of 1 × 1 km2, with fires as small as 100 m2 detected. NO$_2$ that total columns are retrieved from the measurements of the Global Ozone Monitoring Experiment (GOME-2) also onboard the Metop satellites and working in the UV–visible spectral band region (Valks et al., 2011).

2.2 Enhancement ratios

From the IASI NH$_3$ and CO total columns (molec cm$^{-2}$), we have derived NH$_3$ ERs relative to CO (ER$_{\text{NH}_3/\text{CO}}$) defined as the ratio of the number of emitted molecules of NH$_3$ (here the NH$_3$ total column) to the emitted molecules of the reference species CO (here the CO total column) (Andreae et al., 1988; Lefer et al., 1994; Hobbs et al., 2003). The choice of CO as the reference species is particularly suitable here as it is a dominant species emitted by fires and has a lifetime of several weeks in the free troposphere. One main advantage of the ERs compared to the EFs is that ER calculation only requires simultaneous measurements of the studied (NH$_3$) and the reference species (CO), while EF calculation requires fuel information that is not always available or completely reliable (Andreae and Merlet, 2001). In fire plumes, ERs can be estimated following (Goode et al., 2000; R’Honi et al., 2013)

$$\text{ER}_{\text{NH}_3/\text{CO}} = \frac{[\text{NH}_3]_{\text{smoke}} - [\text{NH}_3]_{\text{ambient}}}{[\text{CO}]_{\text{smoke}} - [\text{CO}]_{\text{ambient}}}$$

When a lot of measurements are available, which is often the case for IASI-derived measurements owing to its excellent spatial and temporal resolution, the average ER$_{\text{NH}_3/\text{CO}}$ ratio can be estimated from the slope of the linear regression of NH$_3$ vs. CO (Andreae and Merlet, 2001; Coheur et al., 2009). The ERs can also be derived directly from the EFs by multiplying the EF$_{\text{NH}_3/\text{CO}}$ ratio with the ratio of the molar masses $M_{\text{CO}}/M_{\text{NH}_3}$ (Andreae and Merlet, 2001). This will be used here to convert the reported EF values from ground-based and airborne studies into ERs in order to allow comparison with our IASI-derived ER$_{\text{NH}_3/\text{CO}}$ ratio.

2.3 Selection of the areas and biomes and calculation of the ER$_{\text{NH}_3/\text{CO}}$ ratios

One of the key steps in this study is the selection of the areas of interest for the calculation of the ER$_{\text{NH}_3/\text{CO}}$ ratio. To be relevant, ER$_{\text{NH}_3/\text{CO}}$ ratios need to be calculated for areas where fires are the dominant source of emissions of NH$_3$ and CO. The selection has been done on a pixel basis. We have first calculated the linear regressions, globally on a 1° × 1° grid, between the monthly means of the pairs NH$_3$–CO total columns (molec cm$^{-2}$), NH$_3$–NO$_2$ total columns, and NH$_3$ total columns–number of active fires (#fires). We have next selected the pixels for which a correlation coefficient (r) higher than 0.3 was found for the three pairs of regression (NH$_3$–CO, NH$_3$–NO$_2$ and NH$_3$–#fires). These are shown in Fig. 1 (colored pixels) and constitute the areas considered for the calculation of the ER$_{\text{NH}_3/\text{CO}}$ ratio. Pixels with an r value higher than 0.3 for the considered pair but not for
Figure 1. Correlation coefficients \(r \) of the linear regression of the monthly mean \(\text{NH}_3 \) total columns (molec cm\(^{-2}\)) vs. (a) CO total columns (molec cm\(^{-2}\)), (b) NO\(_2\) total columns (molec cm\(^{-2}\)), and (c) the number of active fires from 2008 to 2015 in 1° × 1° cells. Only pixels with a correlation coefficient \(r \) higher than 0.3 are shown. Pixels with \(r > 0.3 \) for the three pairs of regressions are shown in color. Pixels with \(r > 0.3 \) for the considered pair but not for (at least) one of the two other pairs are shown in gray. The six regions selected for the study (C.AM., S.AM., AFR.NEQ., AFR.SEQ., SE.ASIA, INDO.) are highlighted by black rectangles.
(at least) one of the two other pairs are shown in gray. The idea behind this selection procedure is that a good correspondence between the monthly means of NH$_3$, CO, and NO$_2$ total columns provides an indication of a dominant contribution of the fires to their emissions since biomass burning is indeed the only major common source of emissions of these three species. A significant positive correlation between the NH$_3$ total columns and the detected number of fires adds an additional argument in favor of the contribution of fires and ensures keeping only those areas that are close to the source of emissions, making the comparison with ground-based and airborne-derived EFs and ERs easier. In general, the largest correlations are found between NH$_3$ and CO total columns (Fig. 1, panel a), with correlation coefficients ranging from about 0.6–0.7 up to 0.9 in Africa south of the Equator and Indonesia. The fact that these two species are measured simultaneously from IASI could contribute to this. For the two other pairs (NH$_3$–NO$_2$ and NH$_3$–#fires), the correlation coefficients are in the range of 0.3–0.8. Note that in general, significant positive correlations between NH$_3$ and NO$_2$ (Fig. 1, panel b) are only found close to the source of emissions due to the relatively short lifetime of NO$_2$ (of a few hours; Schreier et al., 2014b). With a lifetime of typically 12–36 h in the studied regions (Dentener and Crutzen, 1994; Aneja et al., 2001; Whitburn et al., 2015, 2016a), NH$_3$ is more likely to be transported over longer distances. This can be seen on the NH$_3$–CO correlation map on which positive correlations are also found over seas downwind of the source areas.

For each of the selected pixels, we have next calculated an ER$_{\text{NH}_3/\text{CO}}$ ratio per year between 2008 and 2015 from the slope of the linear regression between NH$_3$ and CO retrieved columns (molec cm$^{-2}$). The method considered here for the calculation of the regression line was the ordinary least square fit. To take into account the NH$_3$ calculation of the regression line was the ordinary least square fit has been chosen here for the calculation of the regression line.

and (4) the crop together with the cropland/natural vegetation mosaic (C+CNVM), here denoted as C. Figure 3 also shows the distribution of the mean yearly ER$_{\text{NH}_3/\text{CO}}$ ratio averaged over the time period 2008–2015 for the selected pixels. A first analysis of the distribution of the ER$_{\text{NH}_3/\text{CO}}$ ratio reveals a variability between the four biomes, especially in Africa north of the Equator and in central South America, where a gradient is observed between EBF and WS and between EBF and S, respectively, with a higher ER$_{\text{NH}_3/\text{CO}}$ ratio found for EBF. A clear gradient is observed as well in Africa south of the Equator from the northwest to the southeast.

The pixel-based ER$_{\text{NH}_3/\text{CO}}$ ratios have next been grouped by biome to analyze their regional and temporal variability. In addition, to facilitate the study of the spatial distribution of the ER$_{\text{NH}_3/\text{CO}}$ ratio, we have defined six main regions, which include the majority of the pixels of interest (see Fig. 1). Two are in Africa, one north (AFR.NEQ.) and one south (AFR.SEQ.) of the Equator. One corresponds to the central part of South America (S.AM.). A second region in America (C.AM.) is located north of the S.AM. region and includes the region around the Gulf of Mexico, Central America, Colombia, and Venezuela. The last two regions are in Asia; one is for South-East Asia (SE. ASIA) and the second is for Indonesia (INDO.).
3 Results and discussion

3.1 ER$_{NH_3}/CO$ ratio spatial analysis

Here we analyze the spatial and biome variability in the ER$_{NH_3}/CO$ ratio. For each of the four biomes (EBF, WS, S, C) and each of the six regions, a mean ER$_{NH_3}/CO$ ratio was obtained by averaging all yearly pixel-based ER$_{NH_3}/CO$ ratios in the time period 2008 and 2015 (Fig. 4, solid error bars). Mean ER$_{NH_3}/CO$ ratios for the six regions globally are shown as well (horizontal lines). Overall, the highest mean ER$_{NH_3}/CO$ ratio is found for EBF (15.3×10^{-3}), while S and WS show mean ER$_{NH_3}/CO$ ratios about 40–50 % lower, with values of 9.1×10^{-3} and 10.4×10^{-3}, respectively. The larger ER$_{NH_3}/CO$ ratio for EBF compared to WS and S is in agreement with previous studies (e.g., Andreae and Merlet, 2001; Akagi et al., 2011; Yokelson et al., 2011) and is mainly attributed to differences in fuel size and density: EBF, characterized by dense fuel, is indeed dominated by smoldering combustion, which emits more reduced or incompletely oxidized products (among them NH$_3$ and CO) than grassland (van Leeuwen and van der Werf, 2011). One should note, however, that Kaiser et al. (2012) reported higher ER$_{NH_3}/CO$ ratios for S than for tropical forests. For C, the mean ER$_{NH_3}/CO$ ratio (12.8×10^{-3}) is close to the EBF ER$_{NH_3}/CO$ ratio but is more difficult to interpret because the biome probably includes different types of fuel. Figure 5, representing the cumulative frequency of the pixel-based yearly ER$_{NH_3}/CO$ ratio per biome, also shows the biomes-trends in the ER$_{NH_3}/CO$ ratio. EBF has, for example, about 40 % of the calculated ER$_{NH_3}/CO$ ratios above 0.015, while this value corresponds to only about 5–10 % for S and WS. These differences in the ER$_{NH_3}/CO$ ratio between biomes are, however, not necessarily found when looking at the average ER$_{NH_3}/CO$ ratios on a regional scale. For SE.ASIA in particular, the differences between ER$_{NH_3}/CO$ ratios are low (of the order of 5–10 %). For S.AM., the EBF ER$_{NH_3}/CO$ ratio is about 60 % higher than the S ER$_{NH_3}/CO$ ratio but close to the WS ER$_{NH_3}/CO$ ratio (within 10 %).

When comparing the ER$_{NH_3}/CO$ ratios by biome between the six regions in Fig. 4 (solid error bars), we find good agreements but also large differences, in line with what has already been reported by, for example, van Leeuwen and van der Werf (2011), van Leeuwen et al. (2013), and Castillo et al. (2014). Among the most noticeable differences, we find that the EBF ER$_{NH_3}/CO$ ratio for AFR.NEQ. is between 20 and 65 % higher than for the S.AM., C.AM., INDON., and SE.ASIA regions. Similarly, a large variability in the ER$_{NH_3}/CO$ ratio is found for the WS and S biomes, ranging between about 7×10^{-3} for the AFR.SEQ. region and 19×10^{-3} (14×10^{-3}) for S.AM. (C.AM.) for WS (S). For the C biome, almost no variability is observed, with ER$_{NH_3}/CO$ ratios ranging between 11×10^{-3} for SE.ASIA and about 14×10^{-3} for C.AM and AFR.NEQ. Note that this intra-biome variability is also found within a given region, as observed in Fig. 3 and as evidenced by the sometimes large SD associated with the mean ER$_{NH_3}/CO$ ratio (e.g., EBF in the AFR.NEQ. region with a SD higher than 0.01). As mentioned in Sect. 1, these differences can be explained by changes in the fuel type (size and density) but also the climate, weather, topography, moisture and N content, and fire practices. In addition for EBF, different regional deforestation practices could also lead to variation in the ER$_{NH_3}/CO$ ratio (van Leeuwen and van der Werf, 2011). It should finally be mentioned that for the AFR.NEQ. region, the measured NH$_3$ columns at the end of the fire period probably originate from the combination of both biomass burning emissions and another source, possibly agriculture as suggested in Whit-
Figure 4. Mean ER$_{\text{NH}_3/\text{CO}}$ ratios averaged for the six regions and four biomes from the yearly ER$_{\text{NH}_3/\text{CO}}$ ratio (solid error bars) and from the early and late fire season ER$_{\text{NH}_3/\text{CO}}$ ratio (left and right dashed error bars, respectively) calculated between 2008 and 2015 for the pixels selected in Sect. 2.3. The error bar is the 1σ SD around the mean. The mean yearly ER$_{\text{NH}_3/\text{CO}}$ ratios for each biome averaged globally for the six regions are indicated by the horizontal lines. $n(x)$ (with x the biome) corresponds to the number of ER$_{\text{NH}_3/\text{CO}}$ ratios averaged for each biome and region. Different symbols and colors are used for the different biomes. For the S and C biomes in the C.AM. region, no seasonal ER$_{\text{NH}_3/\text{CO}}$ ratios are shown because of the lack of measurements.

Figure 5. Cumulative curve of the yearly ER$_{\text{NH}_3/\text{CO}}$ ratios calculated between 2008 and 2015 for the pixels selected in Sect. 2.3 separated by biome.

Whitburn et al. (2015); this might therefore introduce a bias in the ER$_{\text{NH}_3/\text{CO}}$ ratio. Overall, these results clearly highlight the need for developing new regional-dependent EFs in order to improve the representativeness of estimations from bottom-up inventories.

The comparison of the regional IASI-derived ER$_{\text{NH}_3/\text{CO}}$ ratios (Fig. 4, solid error bars) with the values reported in the literature from ground-based or airborne studies (see Table 1) shows a good correspondence, especially for the EBF and the S–WS biomes in which ER$_{\text{NH}_3/\text{CO}}$ ratios are generally within the range of values given in the literature. The only exception is for EBF for Yokelson et al. (2011), who measured a ER$_{\text{NH}_3/\text{CO}}$ ratio of about a factor 2–3 higher. The latter was however derived from tropical dry forest and is likely not representative for the complete EBF class. Note that for WS, the ER$_{\text{NH}_3/\text{CO}}$ ratios are compared here to values reported for S, which are usually denoted as simply S in the literature in the same biome. For croplands, values reported in the literature are in contrast about 2–3 times higher than the one derived from IASI measurements. As mentioned before, the C biome probably includes different type of fuels, and results are therefore more difficult to interpret.

When looking at the mean ER$_{\text{NH}_3/\text{CO}}$ ratios averaged over the six regions (Fig. 4, horizontal lines) for the four biomes, we find that the latter generally fall in the lower bound of the range given by the ER$_{\text{NH}_3/\text{CO}}$ ratio reported in the literature. While an overestimation of the average ER$_{\text{NH}_3/\text{CO}}$ ratio (or EF$_{\text{NH}_3}$) in the literature is possible, other reasons are likely to play a role. First, the differences with the IASI-derived ER$_{\text{NH}_3/\text{CO}}$ ratio could also be (at least partly) explained by the consideration in our work of IASI measurements within 50 km of an active fire, while ground and airborne measurements are done in the direct vicinity of the fire. Second, another possible reason might lie in the difficulty for MODIS to detect smoldering fires, causing the IASI-derived ER$_{\text{NH}_3/\text{CO}}$ ratio to preferentially reflect the flaming phase of the vegetation fires. Third, an accumulation of CO in the region during the fire period (due to its much longer lifetime compared to NH$_3$) might introduce a bias in the calculated ER$_{\text{NH}_3/\text{CO}}$ ratio. Finally, the differences with the reported ER$_{\text{NH}_3/\text{CO}}$
formed four tests: (1) with a maximum distance of the NH
post-filters considered before (see Sect. 2.3). We have per-
recalculated mean biome-specific ER
NH
ratios for which the linear regressions between
CO
ratios in the range of values calculated for north-
central Africa and South America. For south-central Africa,
in contrast, Luo et al. (2015) reported ER
NH
values of about 2 times higher compared to our AFR.SEQ. region.

Table 1. ER
NH
ratios reported in the literature for different regions and biomes. ER
NH
ratios calculated in this study are given as well.

<table>
<thead>
<tr>
<th>Source</th>
<th>NC Africa a</th>
<th>SC Africa b</th>
<th>S America c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luo et al. (2015) – TES</td>
<td>14–23 × 10⁻³</td>
<td>– d</td>
<td>15 × 10⁻³</td>
</tr>
<tr>
<td>Luo et al. (2015) – GEOS-Chem</td>
<td>8–17 × 10⁻³</td>
<td>14–16 × 10⁻³</td>
<td>11 × 10⁻³</td>
</tr>
<tr>
<td>This study</td>
<td>11–23 × 10⁻³</td>
<td>7–8 × 10⁻³</td>
<td>10–19 × 10⁻³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Savanna</th>
<th>Tropical forest</th>
<th>Cropland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andreae and Merlet (2001)</td>
<td>15.2 × 10⁻³</td>
<td>20.5 × 10⁻³</td>
<td>23.3 × 10⁻³</td>
</tr>
<tr>
<td>Bertschi et al. (2003) e</td>
<td>19.9 × 10⁻³</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sinha et al. (2003)</td>
<td>7 × 10⁻³</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Yokelson et al. (2003)</td>
<td>6.5–7 × 10⁻³</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Christian et al. (2007)</td>
<td>12.8 × 10⁻³</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Akagi et al. (2011)</td>
<td>13.6 × 10⁻³</td>
<td>23.6 × 10⁻³</td>
<td>35.0 × 10⁻³</td>
</tr>
<tr>
<td>Wooster et al. (2011)</td>
<td>8–35 × 10⁻³</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Yokelson et al. (2011)</td>
<td>9.9 × 10⁻³</td>
<td>46.8 × 10⁻³ f</td>
<td>29.1 × 10⁻³</td>
</tr>
<tr>
<td>Kaiser et al. (2012)</td>
<td>24.3 × 10⁻³</td>
<td>15.2 × 10⁻³</td>
<td>28.6 × 10⁻³</td>
</tr>
<tr>
<td>Smith et al. (2014)</td>
<td>13.3 × 10⁻³</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>This study</td>
<td>7–19 × 10⁻³</td>
<td>14–23 × 10⁻³</td>
<td>11–14 × 10⁻³</td>
</tr>
</tbody>
</table>

a,b,c NC Africa: north-central Africa; SC Africa: south-central Africa; S America: South America.

d Correlation coefficient is too low.
e For smoldering logs.
f Tropical dry forest.

On a regional level (all biomes combined), a comparison with the satellite-derived ER
NH
ratios based on TES measurements (Luo et al., 2015) again shows an excellent agreement with our calculated ER
NH
ratio (Table 1). Luo et al. (2015) also derived ER
NH
ratios from simulations of the GEOS-Chem global chemical transport model. A good agreement is found between IASI and GEOS-Chem for the regions of AFR.NEQ. and S.AM., with ER
NH
ratios in the range of values calculated for north-central Africa and South America. For south-central Africa, in contrast, Luo et al. (2015) reported ER
NH
values of about 2 times higher compared to our AFR.SEQ. region.

3.2 ER
NH
ratio interannual and seasonal variability

In this second part, we focus our analysis on the temporal variability in the ER
NH
ratio. Figure 6 shows the mean ER
NH
ratio averaged by biome and by year (2008–2015). The solid line represents the 8-year average for each biome. We find an interannual variability in the mean ER
NH
ratio up to a factor of 2 for the four biomes studied. The minimum ER
NH
ratio is found in 2013 for the S and WS biomes, while, for EBF, a minimum is observed in 2012. Interestingly, the highest mean ER
NH
ratio is observed in 2010 for all biomes (especially for EBF) except for C for which the maximum is found in 2011 (de-
spite an ER
NH
ratio for 2010 also above the 8-year av-
average). When analyzing the variability in the yearly averaged ER
NH
ratio for each region separately (Fig. 7), we
find that the high mean ER\textsubscript{NH\textsubscript{3}}/CO ratio of 2010 for EBF is exclusively carried by the AFR.NEQ. region, with a mean ER\textsubscript{NH\textsubscript{3}}/CO ratio of 35 × 10-3 (compared to about 20 × 10-3 for the other years in the region). For the WS biome, the peak in 2010 is mainly due to the S.AM., AFR.NEQ., and SE.ASIA regions, with a ER\textsubscript{NH\textsubscript{3}}/CO ratio about a factor of 1.5–2.5 higher compared to the other years. This important variability in the ER\textsubscript{NH\textsubscript{3}}/CO ratio is probably due to differences in the burning conditions from one year to another. One possible reason for the high mean ER\textsubscript{NH\textsubscript{3}}/CO ratio for 2010 in the different regions is the El Niño–Southern Oscillation (ENSO) event that occurred that year and that was responsible for severe droughts and increased fire activity in the regions studied (Whitburn et al., 2015). This is however probably not sufficient to explain the 2-fold increase for EBF for 2010 in the AFR.NEQ. region, but no clear evidence of other processes influencing the ER\textsubscript{NH\textsubscript{3}}/CO ratio was found for that year. Surprisingly, the same increase in the ER\textsubscript{NH\textsubscript{3}}/CO ratios is not observed for the year 2015, which was the strongest El Niño year since 1997 (Chisholm et al., 2016). For WS, high ER\textsubscript{NH\textsubscript{3}}/CO ratios are also observed for 2011 for South and Central America (S.AM. and C.AM.). However, this has a small impact on the global yearly ER\textsubscript{NH\textsubscript{3}}/CO ratio, which is mainly driven by the two regions in Africa (AFR.NEQ. and AFR.SEQ.), representing about 20 and 52 % of all the calculated ER\textsubscript{NH\textsubscript{3}}/CO ratios for WS, respectively (see Fig. 4). For the S biome, the yearly ER\textsubscript{NH\textsubscript{3}}/CO ratio is largely dominated by the AFR.SEQ. and the S.AM. (52 and 35 % of the ER\textsubscript{NH\textsubscript{3}}/CO ratios, respectively). A peak is observed in the ER\textsubscript{NH\textsubscript{3}}/CO ratio for 2010 for the AFR.NEQ., the S.AM., and the C.AM. regions. Note that here the AFR.NEQ. and C.AM. regions also show high ER\textsubscript{NH\textsubscript{3}}/CO ratios for the year 2015, which tends to support the hypothesis of the influence of El Niño on the ER\textsubscript{NH\textsubscript{3}}/CO ratio. Finally, the C biome is mainly driven by the AFR.NEQ. and SE.ASIA regions (45 and 35 % of all ER\textsubscript{NH\textsubscript{3}}/CO ratios, respectively). For the AFR.NEQ. region, a peak is observed in 2010 and 2012, while for the C.AM. region, a maximum is reached in 2011, with a ER\textsubscript{NH\textsubscript{3}}/CO ratio about 50 % higher compared to the other years. This important variability in the ER\textsubscript{NH\textsubscript{3}}/CO ratio in time and space again highlights the importance of using dynamic EFs datasets in the fire emission inventories in order to better take into account the local fire conditions.

Finally, we investigate the temporal variability in the ER\textsubscript{NH\textsubscript{3}}/CO ratio from a seasonal perspective. For this, for each pixel selected in Sect. 2.3 we have calculated a separate ER\textsubscript{NH\textsubscript{3}}/CO ratio for the early and for the late fire season. The separation early or late fire season has been performed by analyzing the daily time series of the number of fires between 2008 and 2015 for each region and biome studied (not shown). The results are shown in Fig. 4 (dashed error bars). In general, we do not find a systematic difference in the ER\textsubscript{NH\textsubscript{3}}/CO ratio between the early and late fire season except for the AFR.NEQ. region, for which the late ER\textsubscript{NH\textsubscript{3}}/CO ratios are higher by about 20–40 % for the four biomes. This is in agreement with the hypothesis made in Sect. 3.1 of the presence of a secondary source of NH\textsubscript{3} (possibly agriculture) towards the end of the fire season. The same difference in the ER\textsubscript{NH\textsubscript{3}}/CO ratio was also observed by Luo et al. (2015), who found a 60 % increase between the beginning and the end of the fire season for north-central Africa. Finally, note that the early and late fire season ER\textsubscript{NH\textsubscript{3}}/CO ratios are generally...
close to the corresponding yearly ER$_{\text{NH}_3}/\text{CO}$ ratios (within 10–30 %), which tends to support our methodology for the calculation of the ERs.

4 Conclusions

In this work, we have calculated biomass burning ER$_{\text{NH}_3}/\text{CO}$ ratios over large tropical regions and an 8-year period of IASI satellite measurements for four different biomes, namely evergreen broadleaf forest, woody savanna, savanna, and cropland. Such a study had, to our knowledge, never been performed at this level (in time and space) for NH$_3$. Overall, the results have shown the great potential of IASI for calculating time- and space-dependent ERs. The ER$_{\text{NH}_3}/\text{CO}$ ratios have been calculated on a pixel basis from the slope of the linear regression of NH$_3$ vs. CO total columns (molec cm$^{-2}$) retrieved from IASI measurements. On average, the biomes EBF and C showed ER$_{\text{NH}_3}/\text{CO}$ ratios about 40–50 % higher than WS and S and this was attributed to differences in fuel size and density, affecting the fraction of smoldering combustion. The biome-specific ER$_{\text{NH}_3}/\text{CO}$ ratios have next been grouped by region and by year to analyze their spatial and temporal variability. We found an important variability both in time and space for all situations but especially for WS, showing a mean ER$_{\text{NH}_3}/\text{CO}$ ratio about 40–75 % lower in Africa south of the Equator than in the five other regions, possibly due to local differences in fuel type and burning conditions. Another interesting feature was the high mean ER$_{\text{NH}_3}/\text{CO}$ ratio of 23×10^{-3} (and up to 65 % higher than for the other regions studied) calculated for Africa north of the Equator for EBF. We have tentatively explained this high value by the presence of a source of emissions other than biomass burning towards the end of the dry season. This was supported by our analysis of the seasonal dependence in the ER$_{\text{NH}_3}/\text{CO}$ ratios, showing ER$_{\text{NH}_3}/\text{CO}$ ratios systematically higher for the late fire season in the AFR.NEQ. region (for the four biomes) than for the beginning of the fire period. The interannual variability in the ER$_{\text{NH}_3}/\text{CO}$ ratio was also found to be important (up to a factor 2), with a peak for 2010 for each biome, possibly related to the severe droughts that occurred that year in the regions studied due to an important El Niño event. The important variability in the ER$_{\text{NH}_3}/\text{CO}$ ratio in both time and space clearly shows the need for developing dynamic datasets of EFs that take into better account the fuel type and fire conditions.

In comparison to the values reported in the literature, mainly from ground-based and airborne studies, the mean IASI-derived ER$_{\text{NH}_3}/\text{CO}$ ratios for S, WS, and EBF fell in the lower bound of the range given by the former. This may be explained by various factors, including (1) the parametrization (pre- and post-filtering of the data) considered for the calculation of the ER$_{\text{NH}_3}/\text{CO}$ ratios, (2) a bias towards the flaming phase due to the selection of IASI observations close to MODIS active fires (less sensitive to the smoldering phase), and (3) a possible accumulation of CO in the region during the fire season, introducing a low bias in the IASI-derived ER$_{\text{NH}_3}/\text{CO}$ ratios. Another possible explanation might lie in the use of a unique vertical profile shape in the retrieval scheme of NH$_3$, while biomass burning plumes exhibit a large variety of plume injection heights.
Data availability. The IASI FORLI CO and NH\textsubscript{3} neural network data used in this work are publicly available for all users through the French AERIS database (http://iasi.aeris-data.fr/).

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. IASI has been developed and built under the responsibility of the Centre National d’Études Spatiales (CNES, France). It is flown onboard the Metop satellites as part of the EUMETSAT Polar System. The IASI L1 data are received through the EUMETCast near-real-time data distribution service. We thank NASA for providing MODIS fire radiative power data. We also acknowledge the use of the MODIS global land cover map. We thank EUMETSAT for the use of the operational EUMETSAT O3MSAF NO\textsubscript{2} product. The algorithm for the retrieval of the NO\textsubscript{2} total columns used in this work has been developed in the context of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF). The research in Belgium was funded by the F.R.S.-FNRS and the Belgian State Federal Office for Scientific, Technical and Cultural Affairs (PRODEX arrangement IASI.FLOW). S. Whitburn is grateful to the "Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture” of Belgium for his PhD grant (Boursier FRIA). L. Clarisse is a research associate (Chercheur Qualifié) with the Belgian F.R.S.-FNRS. C. Clerbaux is grateful to CNES for scientific collaboration and financial support.

Edited by: Rolf Müller
Reviewed by: two anonymous referees

References

