Heterogeneous reactions of mineral dust aerosol: implications for tropospheric oxidation capacity

Mingjin Tang¹, Xin Huang², Keding Lu³, Maofa Ge⁴, Yongjie Li⁵, Peng Cheng⁶, Tong Zhu³, Aijun Ding², Yuanhang Zhang², Sasho Gligorovski¹, Wei Song¹, Xiang Ding¹, Xinhui Bi¹, and Xinming Wang¹,⁷

¹State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
²Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing, China
³State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
⁴Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
⁵Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China
⁶Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, China
⁷Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Correspondence to: Mingjin Tang (mingjintang@gig.ac.cn) and Tong Zhu (tzhu@pku.edu.cn)

Received: 15 May 2017 – Discussion started: 31 May 2017
Revised: 18 August 2017 – Accepted: 4 September 2017 – Published: 5 October 2017

Abstract. Heterogeneous reactions of mineral dust aerosol with trace gases in the atmosphere could directly and indirectly affect tropospheric oxidation capacity, in addition to aerosol composition and physicochemical properties. In this article we provide a comprehensive and critical review of laboratory studies of heterogeneous uptake of OH, NO₃, O₃, and their directly related species as well (including HO₂, H₂O₂, HCHO, HONO, and N₂O₅) by mineral dust particles. The atmospheric importance of heterogeneous uptake as sinks for these species is assessed (i) by comparing their lifetimes with respect to heterogeneous reactions with mineral dust to lifetimes with respect to other major loss processes and (ii) by discussing relevant field and modeling studies. We have also outlined major open questions and challenges in laboratory studies of heterogeneous uptake by mineral dust and discussed research strategies to address them in order to better understand the effects of heterogeneous reactions with mineral dust on tropospheric oxidation capacity.

1 Introduction

1.1 Mineral dust in the atmosphere

Mineral dust, emitted from arid and semiarid regions with an annual flux of ~2000 Tg per year, is one of the most abundant types of aerosol particles in the troposphere (Zhang et al., 2003b; Textor et al., 2006; Huneeus et al., 2011; Ginoux et al., 2012; Huang et al., 2016). After being emitted into the atmosphere, mineral dust aerosol has an average lifetime of several days in the troposphere and can be transported over several thousand kilometers, thus having important impacts globally (Prospero, 1999; Uno et al., 2009; Huneeus et al., 2011). Mineral dust aerosol has a myriad of significant impacts on atmospheric chemistry and climate. For example, dust aerosol particles can influence the radiative balance of the Earth system directly by scattering and absorbing solar and terrestrial radiation (Balkanski et al., 2007; Jung et al., 2010; Lemaitre et al., 2010; Huang et al., 2014, 2015b; Zhang et al., 2015b; Bi et al., 2016, 2017; Kok et al., 2017; Moteki et al., 2017) and indirectly by serving...
as cloud condensation nuclei (CCN) to form droplets (Koehler et al., 2009; Kumar et al., 2009; Twohy et al., 2009; Garimella et al., 2014; Tang et al., 2016a) and ice nucleation particles (INPs) to form ice particles (DeMott et al., 2003; Hoose and Moehler, 2012; Murray et al., 2012; Ladino et al., 2013; DeMott et al., 2015). Mineral dust particles are believed to be the dominant ice nucleation particles in the troposphere (Hoose et al., 2010; Creamean et al., 2013; Cziczo et al., 2013), therefore having a large impact on the radiative balance, precipitation, and the hydrological cycle (Rosenfeld et al., 2001; Lohmann and Feichter, 2005; Rosenfeld et al., 2008). In addition, deposition of mineral dust is a major source for several important nutrient elements (e.g., Fe and P) in remote regions such as open-ocean waters and the Amazon (Jickells et al., 2005; Mahowald et al., 2005, 2008; Boyd and Ellwood, 2010; Nenes et al., 2011; Schulz et al., 2012; Shi et al., 2012), strongly affecting several biogeochemical cycles and the climate system of the Earth (Jickells et al., 2005; Mahowald, 2011; Mahowald et al., 2011; Schulz et al., 2012). The impacts of mineral dust aerosol on air quality, atmospheric visibility, and public health have also been widely documented (Prospero, 1999; Mahowald et al., 2007; Meng and Lu, 2007; De Longueville et al., 2010, 2013; Giannadaki et al., 2014; Yang et al., 2017).

It is worth emphasizing that impacts of mineral dust aerosol on various aspects of atmospheric chemistry and climate depend on its mineralogy (Journet et al., 2008; Crowley et al., 2010a; Formenti et al., 2011; Highwood and Ryder, 2014; Jickells et al., 2014; Morman and Plumlee, 2014; Fitzgerald et al., 2015; Tang et al., 2016a), which shows large geographical and spatial variability (Claquin et al., 1999; Ta et al., 2003; Zhang et al., 2003a; Jeong, 2008; Nickovic et al., 2012; Scheuven et al., 2013; Formenti et al., 2014; Journet et al., 2014; Scanza et al., 2015). According to a recent global modeling study (Scanza et al., 2015), major minerals contained by tropospheric mineral dust particles include quartz, illite, montmorillonite, feldspar, kaolinite, calcite, hematite, and gypsum. Formenti et al. (2011) summarized published measurements of tropospheric mineral dust particles, and the size of mineral dust particles depends on dust sources and transport, with typical volume median diameters being a few micrometers or larger.

Mineral dust particles can undergo heterogeneous and/or multiphase reactions during their transport (Dentener et al., 1996; Usher et al., 2003a; Crowley et al., 2010a). These reactions will modify the composition of dust particles (Matsumi et al., 2005; Ro et al., 2005; Sullivan et al., 2007; Shi et al., 2008; Li and Shao, 2009; He et al., 2014) and subsequently change their physicochemical properties, including hygroscopicity, CCN, and ice nucleation activities (Krueger et al., 2003b; Sullivan et al., 2009b; Chernoff and Bertram, 2010; Ma et al., 2012; Tobo et al., 2012; Sihvonen et al., 2014; Wex et al., 2014; Kulkarni et al., 2015), as well as the solubility of Fe and P, etc. (Meskhidze et al., 2005; Vlasenko et al., 2006; Duvall et al., 2008; Nenes et al., 2011; Shi et al., 2012; Ito and Xu, 2014). The effects of heterogeneous and multiphase reactions on the hygroscopicity and CCN and ice nucleation activities of dust particles have been comprehensively summarized by a very recent review paper (Tang et al., 2016a), and the impacts of atmospheric aging processes on the Fe solubility of mineral dust has also been reviewed (Shi et al., 2012).

Heterogeneous reactions of mineral dust in the troposphere can also remove or produce a variety of reactive trace gases, directly and/or indirectly modifying the gas-phase compositions of the troposphere and thus changing its oxidation capacity. The global impact of mineral dust aerosol on tropospheric chemistry through heterogeneous reactions were proposed in the mid-1990s by a modeling study (Dentener et al., 1996). According to this study, heterogeneous reactions with mineral dust could largely impact tropospheric photochemical oxidation cycles, resulting in up to 10% decreases in O3 concentrations in dust source regions and nearby. The pioneering work by Dentener et al. (1996) has motivated many following laboratory, field, and modeling works (de Reus et al., 2000; Tie et al., 2001; Bian and Zender, 2003; Usher et al., 2003a; Bauer et al., 2004; Crowley et al., 2010a; Zhu et al., 2010; Wang et al., 2012; Nie et al., 2014). It should be noted that the regional impact of heterogeneous reactions of mineral dust aerosol was even recognized earlier (Zhang et al., 1994). It has also been suggested that dust aerosol could indirectly impact tropospheric chemistry by affecting radiative fluxes and thus photolysis rates (Liao et al., 1999; Bian and Zender, 2003; Jeong and Sokolik, 2007; Real and Sartelet, 2011).

A few minerals (e.g., TiO2) with higher refractive indices, compared to stratospheric sulfuric acid particles, have been proposed as potentially suitable materials (Pope et al., 2012; Tang et al., 2014d; Weisenstein et al., 2015) instead of sulfuric acid and its precursors to be delivered into the stratosphere in order to scatter more solar radiation back into space, as one of the solar radiation management methods for climate engineering (Crutzen, 2006). Heterogeneous uptake of reactive trace gases by minerals is also of interest in this aspect for assessment of impacts of particle injection on stratospheric chemistry and especially stratospheric ozone (Pope et al., 2012; Tang et al., 2014d, 2016b). In addition, some minerals, such as CaCO3 and TiO2, are widely used as raw materials in construction, and their heterogeneous interactions with reactive trace gases can be important for local outdoor and indoor air quality (Langridge et al., 2009; Raff et al., 2009; Ammar et al., 2010; Baergen and Donaldson, 2016; George et al., 2016) and deterioration of construction surfaces (Lipfert, 1989; Webb et al., 1992; Striegel et al., 2003; Walker et al., 2012).

1.2 An introduction to heterogeneous kinetics

The rates of atmospheric heterogeneous reactions are usually described or approximated as pseudo-first-order reac-
tions. The pseudo-first-order removal rate of a trace gas (X), \(k_1(X) \), due to the heterogeneous reaction with mineral dust, depends on its average molecular speed, \(c(X) \), the surface area concentration of mineral dust aerosol, \(S_a \), and the uptake coefficient, \(\gamma \), given by Eq. (1) (Crowley et al., 2010a; Kolb et al., 2010; Ammann et al., 2013; Tang et al., 2014b):

\[
k_1(X) = 0.25 \cdot c(X) \cdot S_a \cdot \gamma.
\]

(1)

The uptake coefficient is the net probability that a molecule X is actually removed from the gas phase upon collision with the surface, equal to the ratio of the number of molecules removed from the gas phase to the total number of gas–surface collisions (Crowley et al., 2010a).

Heterogeneous reaction of a trace gas (X) will lead to depletion of X close to the surface, and thus the effective uptake coefficient, \(\gamma_{\text{eff}} \), will be smaller than the true uptake coefficient, \(\gamma \), as described by Eq. (2) (Crowley et al., 2010a; Davidovits et al., 2011; Tang et al., 2014b):

\[
\frac{1}{\gamma_{\text{eff}}} = \frac{1}{\gamma} + \frac{1}{\Gamma_{\text{diff}}}.
\]

(2)

where \(\Gamma_{\text{diff}} \) represents the gas-phase diffusion limitation. For the uptake onto spherical particles, Eq. (3) (the Fuchs–Sutugin equation) can be used to calculate \(\Gamma_{\text{diff}} \) (Tang et al., 2014b, 2015):

\[
\frac{1}{\Gamma_{\text{diff}}} = \frac{0.75 + 0.286Kn}{Kn \cdot (Kn + 1)},
\]

(3)

where \(Kn \) is the Knudsen number, given by Eq. (4),

\[
Kn = \frac{2\lambda(X)}{d_p} = \frac{6D(X)}{c(X) \cdot d_p},
\]

(4)

where \(\lambda(X) \), \(D(X) \), and \(d_p \) are the mean free path of X, the gas-phase diffusion coefficient of X, and the particle diameter, respectively. Experimentally measured gas-phase diffusion coefficients of trace gases with atmospheric relevance have been recently compiled and evaluated (Tang et al., 2014b, 2015); if not available, they can be estimated using Fuller’s semiempirical method (Fuller et al., 1966; Tang et al., 2015). A new method has also been proposed to calculate \(Kn \) without the knowledge of \(D(X) \), given by Eq. (5):

\[
Kn = \frac{2}{d_p} \cdot \frac{\lambda_p}{P},
\]

(5)

where \(P \) is the pressure in the atmosphere and \(\lambda_p \) is the pressure-normalized mean free path which is equal to 100 nm atm (Tang et al., 2015).

1.3 Scope of this review

Usher et al. (2003a) provided the first comprehensive review in this field, and heterogeneous reactions of mineral dust with a myriad of trace gases, including nitrogen oxides, \(\text{SO}_2 \), \(\text{O}_3 \), and some organic compounds, are included. After that, the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation published the first critical evaluation of kinetic data for heterogeneous reactions of solid substrates including mineral dust particles (Crowley et al., 2010a), and kinetic data for heterogeneous uptake of several trace gases (including \(\text{O}_3 \), \(\text{H}_2\text{O}_2 \), \(\text{NO}_2 \), \(\text{NO}_3 \), \(\text{HNO}_3 \), \(\text{N}_2\text{O}_5 \), and \(\text{SO}_2 \)) onto mineral dust have been recommended. It should be pointed out that in addition to this and other review articles published by Atmospheric Chemistry and Physics, the IUPAC task group keeps updating recommended kinetic data online (http://iupac.pole-ether.fr/). We note that a few other review papers and monographs have also mentioned atmospheric heterogeneous reactions of mineral dust particles (Cwiertny et al., 2008; Zhu et al., 2011; Chen et al., 2012; Rubasinghe and Grassian, 2013; Shen et al., 2013; Burkholder et al., 2015; Ge et al., 2015; George et al., 2015; Akimoto, 2016), in a less comprehensive manner compared to Usher et al. (2003a) and Crowley et al. (2010a). For example, Cwiertny et al. (2008) reviewed heterogeneous reactions and heterogeneous photochemical reactions of \(\text{O}_3 \) and \(\text{NO}_2 \) with mineral dust. Atmospheric heterogeneous photochemistry was summarized by Chen et al. (2012) for \(\text{TiO}_2 \) and by George et al. (2015) for other minerals. Heterogeneous reactions of mineral dust with a few volatile organic compounds (VOCs), such as formaldehyde, acetone, methacrolein, methyl vinyl ketone, and organic acids, have been covered by a review article on heterogeneous reactions of VOCs (Shen et al., 2013). The NASA-JPL data evaluation panel has compiled and evaluated kinetic data for heterogeneous reactions with alumina (Burkholder et al., 2015). In a very recent paper, Ge et al. (2015) summarized previous studies on heterogeneous reactions of mineral dust with \(\text{NO}_2 \), \(\text{SO}_2 \), and monocarboxylic acids, with work conducted by scientists in China emphasized. In his monograph entitled Atmospheric Reaction Chemistry, Akimoto (2016) briefly discussed some heterogeneous reactions of mineral dust particles in the troposphere. The roles that heterogeneous chemistry of aerosol particles (including mineral dust) play in haze formation in China were outlined (Zhu et al., 2011), and effects of surface-adsorbed water and thus relative humidity (RH) on heterogeneous reactions of mineral dust have also been discussed by a recent feature article (Rubasinghe and Grassian, 2013).

After the publication of the two benchmark review articles (Usher et al., 2003a; Crowley et al., 2010a), much advancement has been made in this field. For example, heterogeneous uptake of \(\text{HO}_2 \) radicals by mineral dust particles had not been explored at the time when Crowley et al. (2010a) published the IUPAC evaluation, and in the last few years this reaction has been investigated by two groups (Bedjanian et al., 2013a; Matthews et al., 2014). A large number of new studies on the heterogeneous reactions of mineral dust with \(\text{H}_2\text{O}_2 \) (Wang et al., 2011; Zhao et al., 2011b, 2013; Romanias et al., 2012a, 2013; Yi et al., 2012; Zhou et al., 2012, 2016; El Zein et al., 2014) and \(\text{N}_2\text{O}_5 \) (Tang et al., 2012, 2014a, c, d) have
emerged. Therefore, a review on atmospheric heterogeneous reaction of mineral dust is both timely and necessary.

Furthermore, the novelty of our current review, which distinguishes it from previous reviews in the same or similar fields (Usher et al., 2003a; Cwiertny et al., 2008; Crowley et al., 2010a; Zhu et al., 2011; Chen et al., 2012; Shen et al., 2013; Ge et al., 2015; George et al., 2015), is the fact that the atmospheric relevance and significance of laboratory studies are illustrated, discussed, and emphasized. We hope that this paper will be useful not only for those whose expertise is laboratory work but also for experts in field measurements and atmospheric modeling. The following approaches are used to achieve this goal: (1) lifetimes of reactive trace gases with respect to heterogeneous uptake by mineral dust, calculated using preferred uptake coefficients and typical mineral dust mass concentrations, are compared to their lifetimes in the troposphere (discussed in Sect. 2.1) in order to discuss the significance of heterogeneous reactions as atmospheric sinks for these trace gases; (2) the atmospheric importance of these heterogeneous reactions is further discussed by referring to representative box, regional, and global modeling studies reported previously; (3) we also describe two of the largest challenges in the laboratory studies of heterogeneous reactions of mineral dust particles (Sect. 2.2) and explain why reported uptake coefficients show large variability and how we should interpret and use these kinetic data. In fact, the major expertise of a few coauthors of this review paper is field measurements and/or modeling studies, and their contribution should largely increase the readability of this paper for the entire atmospheric chemistry community regardless of the academic background of individual readers.

OH, NO$_3$, and O$_3$ are the most important gas-phase oxidants in the troposphere, and their contribution to tropospheric oxidation capacity has been well recognized (Brown and Stutz, 2012; Stone et al., 2012). HO$_2$ radicals are closely linked with OH radicals (Stone et al., 2012). H$_2$O$_2$, HCHO, and HONO are important precursors for OH radicals in the troposphere (Stone et al., 2012), and they may also be important oxidants in the aqueous phase (Seinfeld and Pandis, 2006). Tropospheric N$_2$O$_5$ is found to be in dynamic equilibrium with NO$_3$ radicals (Brown and Stutz, 2012). Therefore, in order to provide a comprehensive view of the implications of heterogeneous reactions of mineral dust particles for tropospheric oxidation capacity, not only heterogeneous uptake of OH, NO$_3$, and O$_3$ but also heterogeneous reactions of HO$_2$, H$_2$O$_2$, HCHO, HONO, and N$_2$O$_5$ are included. Cl atoms (Spicer et al., 1998; Osthoff et al., 2008; Thornton et al., 2010; Phillips et al., 2012; Liao et al., 2014; Wang et al., 2016) and stable Criegee radicals (Mauldin III et al., 2012; Welz et al., 2012; Percival et al., 2013; Taatjes et al., 2013) are proposed to be potentially important oxidants in the troposphere, though their atmospheric significance is to be systematically assessed (Percival et al., 2013; Taatjes et al., 2014; Simpson et al., 2015). In addition, their heterogeneous reactions with mineral dust have seldom been explored. Therefore, heterogeneous uptake of Cl atoms (and their precursors such as ClNO$_2$) and stable Criegee radicals by mineral dust is not included here.

In Sect. 2, a brief introduction to tropospheric chemistry of OH, HO$_2$, H$_2$O$_2$, O$_3$, HCHO, HONO, NO$_3$, and N$_2$O$_5$ (eight species in total) is provided first. After that, we describe two major challenges in laboratory studies of heterogeneous reactions of mineral dust particles, and then discuss their implications in reporting and interpreting kinetic data. Following this in Sect. 3, we review previous laboratory studies of heterogeneous reactions of mineral dust particles with these eight reactive trace gases, and we have tried our best to cover all the journal articles (limited to those in English) published in this field. Uncertainties for each individual reaction are discussed, and future work required to reduce these uncertainties is suggested. In addition, atmospheric importance of these reactions is discussed by (1) comparing their lifetimes with respect to heterogeneous uptake to typical lifetimes in the troposphere and (2) discussing representative modeling studies on various spatial and temporal scales. Finally in Sect. 4 we outline key challenges which preclude better understanding of impacts of heterogeneous reactions of mineral dust on tropospheric oxidation capacity and discuss how they can be addressed by future work.

2 Background

In first part of this section we provide a brief introduction of production and removal pathways, chemistry, and lifetimes of OH, HO$_2$, H$_2$O$_2$, O$_3$, HCHO, HONO, NO$_3$, and N$_2$O$_5$ in the troposphere. In the second part we describe two of the largest challenges in laboratory investigation of heterogeneous reactions of mineral dust particles and discuss their implications for reporting, interpreting, and using uptake coefficients.

2.1 Sources and sinks of tropospheric oxidants

Figure 1 shows a simplified schematic diagram of atmospheric chemistry of major free radicals in the troposphere. Sources, sinks, and atmospheric lifetimes of these radicals and their important precursors are discussed below.

2.1.1 OH, HO$_2$, and H$_2$O$_2$

Large amounts of OH (106–107 molecule cm$^{-3}$) and HO$_2$ radicals (109–109 cm$^{-3}$) have been observed and predicted for the lower troposphere (Stone et al., 2012). The first major primary source of OH radicals in the troposphere is the reaction of water vapor with O$_2$(1D) (Reaction R1), which is produced from photolysis of O$_3$ by UV radiation with wavelengths smaller than 325 nm (Reaction R2) (Atkinson et al.,
In polluted urban areas, another two primary sources of OH and HO$_2$ radicals, i.e., photolysis of HONO and HCHO, become significant (Seinfeld and Pandis, 2006) and sometimes even dominate the primary production of OH (Su et al., 2008). OH lifetimes in clean environments, like open ocean and remote continental areas, are dominated by reactions with CO, CH$_4$, and HCHO, summed up to values of about 0.5–1 s (Ehhalt, 1999; Brauers et al., 2001). OH lifetimes in forested areas, mainly contributed by oxidation of biogenic VOCs, are typically in the range of 0.01–0.05 s (Ingham et al., 2009; Nölscher et al., 2012). In urban areas, OH lifetimes are determined by anthropogenically emitted hydrocarbons, NO$_x$, CO, and biogenic VOCs as well, and they are typically smaller than 0.1 s (Ren et al., 2003; Mao et al., 2010b; Lu et al., 2013).

Compared to OH radicals, lifetimes of HO$_2$ radicals have been investigated much less and are mainly determined by ambient NO concentrations when NO is larger than 10 pptv (parts per trillion by volume). Therefore, the lower limit of HO$_2$ lifetimes, on the order of 0.1 s, often appear in polluted urban areas (Ren et al., 2003; Kanaya et al., 2007a; Lu et al., 2012). The upper limit of HO$_2$ lifetimes, up to 1000–2000 s, is often observed in clean regions and sometimes also in urban areas during nighttime (Holland et al., 2003; Lelieveld et al., 2008; Whalley et al., 2011). In addition, heterogeneous uptake of HO$_2$ radicals has been frequently considered in the atmosphere as determined by previous field campaigns. The OH lifetime is an important parameter to characterize HO$_x$ chemistry as well as VOC reactivity in the troposphere. As a result, it has been widely measured at different locations using a variety of experimental methods (Sinha et al., 2008; Ingham et al., 2009), as discussed by a very recent paper (Yang et al., 2016b). OH lifetimes in clean environments, like open ocean and remote continental areas, are dominated by reactions with CO, CH$_4$, and HCHO, summed up to values of about 0.5–1 s (Ehhalt, 1999; Brauers et al., 2001). OH lifetimes in forested areas, mainly contributed by oxidation of biogenic VOCs, are typically in the range of 0.01–0.05 s (Ingham et al., 2009; Nölscher et al., 2012). In urban areas, OH lifetimes are determined by anthropogenically emitted hydrocarbons, NO$_x$, CO, and biogenic VOCs as well, and they are typically smaller than 0.1 s (Ren et al., 2003; Mao et al., 2010b; Lu et al., 2013).

Compared to OH radicals, lifetimes of HO$_2$ radicals have been investigated much less and are mainly determined by ambient NO concentrations when NO is larger than 10 pptv (parts per trillion by volume). Therefore, the lower limit of HO$_2$ lifetimes, on the order of 0.1 s, often appear in polluted urban areas (Ren et al., 2003; Kanaya et al., 2007a; Lu et al., 2012). The upper limit of HO$_2$ lifetimes, up to 1000–2000 s, is often observed in clean regions and sometimes also in urban areas during nighttime (Holland et al., 2003; Lelieveld et al., 2008; Whalley et al., 2011). In addition, heterogeneous uptake of HO$_2$ radicals has been frequently considered in the atmosphere as determined by previous field campaigns. The OH lifetime is an important parameter to characterize HO$_x$ chemistry as well as VOC reactivity in the troposphere. As a result, it has been widely measured at different locations using a variety of experimental methods (Sinha et al., 2008; Ingham et al., 2009), as discussed by a very recent paper (Yang et al., 2016b). OH lifetimes in clean environments, like open ocean and remote continental areas, are dominated by reactions with CO, CH$_4$, and HCHO, summed up to values of about 0.5–1 s (Ehhalt, 1999; Brauers et al., 2001). OH lifetimes in forested areas, mainly contributed by oxidation of biogenic VOCs, are typically in the range of 0.01–0.05 s (Ingham et al., 2009; Nölscher et al., 2012). In urban areas, OH lifetimes are determined by anthropogenically emitted hydrocarbons, NO$_x$, CO, and biogenic VOCs as well, and they are typically smaller than 0.1 s (Ren et al., 2003; Mao et al., 2010b; Lu et al., 2013).

Compared to OH radicals, lifetimes of HO$_2$ radicals have been investigated much less and are mainly determined by ambient NO concentrations when NO is larger than 10 pptv (parts per trillion by volume). Therefore, the lower limit of HO$_2$ lifetimes, on the order of 0.1 s, often appear in polluted urban areas (Ren et al., 2003; Kanaya et al., 2007a; Lu et al., 2012). The upper limit of HO$_2$ lifetimes, up to 1000–2000 s, is often observed in clean regions and sometimes also in urban areas during nighttime (Holland et al., 2003; Lelieveld et al., 2008; Whalley et al., 2011). In addition, heterogeneous uptake of HO$_2$ radicals has been frequently considered in the atmosphere as determined by previous field campaigns. The OH lifetime is an important parameter to characterize HO$_x$ chemistry as well as VOC reactivity in the troposphere. As a result, it has been widely measured at different locations using a variety of experimental methods (Sinha et al., 2008; Ingham et al., 2009), as discussed by a very recent paper (Yang et al., 2016b). OH lifetimes in clean environments, like open ocean and remote continental areas, are dominated by reactions with CO, CH$_4$, and HCHO, summed up to values of about 0.5–1 s (Ehhalt, 1999; Brauers et al., 2001). OH lifetimes in forested areas, mainly contributed by oxidation of biogenic VOCs, are typically in the range of 0.01–0.05 s (Ingham et al., 2009; Nölscher et al., 2012). In urban areas, OH lifetimes are determined by anthropogenically emitted hydrocarbons, NO$_x$, CO, and biogenic VOCs as well, and they are typically smaller than 0.1 s (Ren et al., 2003; Mao et al., 2010b; Lu et al., 2013).

Compared to OH radicals, lifetimes of HO$_2$ radicals have been investigated much less and are mainly determined by ambient NO concentrations when NO is larger than 10 pptv (parts per trillion by volume). Therefore, the lower limit of HO$_2$ lifetimes, on the order of 0.1 s, often appear in polluted urban areas (Ren et al., 2003; Kanaya et al., 2007a; Lu et al., 2012). The upper limit of HO$_2$ lifetimes, up to 1000–2000 s, is often observed in clean regions and sometimes also in urban areas during nighttime (Holland et al., 2003; Lelieveld et al., 2008; Whalley et al., 2011). In addition, heterogeneous uptake of HO$_2$ radicals has been frequently considered in the

$$\text{OH} + \text{NO} + \text{M} \rightarrow \text{HNO}_3 + \text{M} \quad (R7)$$

$$\text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \quad (R8)$$

In recent years, a new OH regeneration mechanism, which has not been completely elucidated so far, has been identified for low NO$_x$ environments including both forested (Lelieveld et al., 2008) and rural areas (Hofzumahaus et al., 2009; Lu et al., 2012). This new mechanism is found to stabilize the observed OH–j(O1D) relationships and enables a type of maximum efficiency of OH sustainment under low NO$_x$ conditions (Rohrer et al., 2014). Nevertheless, in a recent study (Mao et al., 2012), the proposed new OH regeneration mechanism is thought to be at least partly caused by unrecognized instrumental interference in OH measurements (Mao et al., 2012). A community effort is now started to assure the data quality of the OH measurement under different conditions, especially for the chemically complex areas (http://www.fz-juelich.de/iek/iek8/EN/AboutUs/Projects/HOxROxWorkingGroup/HOxWorkshop2015_node.html).
Typical J(H$_2$O$_2$) daily maximum values are $\sim 7.7 \times 10^{-6}$ s$^{-1}$ for a solar zenith angle of 0° and $\sim 6.0 \times 10^{-6}$ s$^{-1}$ in the northern midlatitude (Stockwell et al., 1997), corresponding to τ_{phot}(H$_2$O$_2$) (H$_2$O$_2$ lifetimes with respect to photolysis) of 33–56 h (or 1.5–2 days). The rate constant for the bimolecular reaction of H$_2$O$_2$ with OH radicals is 1.7×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$ at room temperature, and its temperature dependence is quite small (Atkinson et al., 2004). Concentrations of OH radicals in the troposphere are usually in the range of (1–10) $\times 10^6$ molecule cm$^{-3}$, and thus τ_{OH}(H$_2$O$_2$) (H$_2$O$_2$ lifetimes with respect to reaction with OH radicals) are estimated to be around 16–160 h. Dry deposition rates of H$_2$O$_2$ were determined to be ~ 5 cm s$^{-1}$ (Hall and Claiborn, 1997), and an assumed boundary height of 1 km gives τ_{dry}(H$_2$O$_2$) (H$_2$O$_2$ lifetimes with respect to dry deposition) of 5–6 h. Therefore, dry deposition is a major sink for near-surface H$_2$O$_2$. We do not estimate H$_2$O$_2$ lifetimes with respect to wet deposition because wet deposition rates depend on the amount of precipitation which shows large spatial and temporal variation. Heterogeneous uptake of H$_2$O$_2$
by ambient aerosols as well as fog and rain droplets is also considered to be a significant sink for H$_2$O$_2$, especially when the ambient SO$_2$ concentrations are high (de Reus et al., 2005; Hua et al., 2008).

As mentioned previously, HONO and HCHO are two important precursors for OH radicals, and therefore their removal (as well as production) significantly affects tropospheric oxidation capacity. The typical J(HONO) daily maximum value for the northern midlatitude is $\sim 1.63 \times 10^{-3}$ s$^{-1}$ (Stockwell et al., 1997), corresponding to τ_{phot}(HONO) of about 10 min. This is supported by field measurements which suggest that lifetimes of HONO due to photolysis during the daytime are typically in the range of 10–20 min (Allicke et al., 2003; Li et al., 2012). The second-order rate constant for the reaction of HONO with OH radicals is 6.0×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$ at 298 K (Atkinson et al., 2004), giving τ_{OH}(HONO) of ~ 280 min (4.6 h) if OH concentration is assumed to be 1×10^7 molecule cm$^{-3}$. Dry deposition velocities of HONO reported by previous work show large variability, ranging from 0.077 to 3 cm s$^{-1}$ (Harrison and Kitto, 1994; Harrison et al., 1996; Stutz et al., 2002), and thus τ_{dry}(HONO) are estimated to be in the range of ~ 9 h to several days if a boundary height of 1 km is assumed. Therefore, photolysis is the main sink for HONO in the troposphere and the contribution from dry deposition and reaction with OH is quite minor.

The second-order rate constant for the reaction of HCHO with OH radicals is 8.5×10^{12} cm3 molecule$^{-1}$ s$^{-1}$ at 298 K (Atkinson et al., 2006), and τ_{OH}(HCHO) is calculated to be ~ 200 min (3.3 h) if OH concentration is assumed to be 1×10^7 molecule cm$^{-3}$. The typical J(HCHO) daily maximum value for the northern midlatitude is 5.67×10^{-3} s$^{-1}$ (Stockwell et al., 1997), giving τ_{phot}(HCHO) of about 300 min (5 h). The dry deposition velocity for HCHO was measured to be 1.4 cm s$^{-1}$ (Seyfioglu et al., 2006), corresponding to τ_{dry}(HCHO) of ~ 20 h if the boundary layer height is assumed to be 1 km. To summarize, lifetimes of HCHO in the troposphere are estimated to be a few hours, with photolysis and reaction with OH radicals being major sinks.

2.1.2 O$_3$

After being emitted, NO is converted to NO$_2$ in the troposphere through its reactions with O$_3$ (Reaction R11) and peroxy radicals (Reactions R5, R6). NO$_2$ is further photolyzed to generate O$_3$ (Reaction R12), and NO oxidation processes through Reactions (R5) and (R6) are the reason for O$_3$ increase in the troposphere (Wang and Jacob, 1998).

\[
\begin{align*}
O_3 + NO & \rightarrow NO_2 + O_2 \quad \text{(R11)} \\
NO_2 + O_2 + h\nu (\lambda < 420\text{nm}) & \rightarrow O_3 + NO \quad \text{(R12)}
\end{align*}
\]

Tropospheric O$_3$ is mainly destroyed via its photolysis (Reaction R1) and the subsequent reaction of O$_3$D with H$_2$O (Reaction R2). Other important removal pathways include dry deposition, reaction with NO$_2$ (to produce NO$_3$ radicals) (Reaction R13), and ozonolysis of alkenes, etc.

\[
\begin{align*}
NO_2 + O_3 & \rightarrow NO_3 + O_2 \quad \text{(R13)}
\end{align*}
\]

In addition, the loss of NO$_2$ through reaction with OH (Reaction R7) and the loss of peroxy radicals through their self-reactions (Reaction R8) would be a significant term of O$_3$ losses on large scales. Therefore, it is anticipated that both the formation and destruction of O$_3$ is closely related with gas-phase HO$_x$ and NO$_x$ radical chemistry.

Several processes remove O$_3$ from the troposphere. The first one is the photolysis of O$_3$ to produce O$_3$D (Reaction R1) and the subsequent reaction of O$_3$D with H$_2$O (Reaction R2); therefore, the removal rate of O$_3$ through this pathway depends on solar radiation and RH. In the troposphere, τ_{phot}(O$_3$) is typically in the range of 1.8–10 days (Stockwell et al., 1997). Ozonolysis of alkenes is another significant sink for O$_3$ under high VOCs conditions, and τ_{alkene}(O$_3$) with respect to reaction with alkenes is estimated to be 3–8 h for urban and forested areas (Shirley et al., 2006; Kanaya et al., 2007; Whalley et al., 2011; Lu et al., 2013, 2014). O$_3$ lifetimes in the remote troposphere are primarily determined by O$_3$ photolysis (and the subsequent reaction of O$_3$D with H$_2$O) and reactions of O$_3$ with HO$_2$ and OH. For typical conditions (j(O$_3$D), H$_2$O, HO$_2$, OH, temperature, and pressure) over northern midlatitude oceans, O$_3$ lifetimes are calculated to be a few days in summer, 1–2 weeks in spring–autumn, and about a month in winter, using the GEOS-Chem model (to be published). O$_3$ dry deposition has been extensively studied and as a rule of thumb, 1 cm s$^{-1}$ is taken as its dry deposition rate (Wesely and Hicks, 2000). Consequently, τ_{dry}(O$_3$) is calculated to be ~ 28 h, assuming a boundary height of 1 km. Reactions with NO and NO$_2$ will further contribute to the removal of O$_3$ in the troposphere at night. The second-order rate constants are 1.9×10^{-16} cm3 molecule$^{-1}$ s$^{-1}$ for the reaction of O$_3$ with NO and 3.5×10^{-17} cm3 molecule$^{-1}$ s$^{-1}$ for its reaction with NO$_2$ at 298 K (Atkinson et al., 2004), and O$_3$ lifetimes are calculated to be ~ 29 and ~ 32 h in the presence of 20 pptv NO and 10 ppbv (parts per billion by volume) NO$_2$, respectively.

Moreover, heterogeneous processes may also strongly influence the budget of O$_3$ through impacts on sources and sinks of HO$_x$ and NO$_x$ (Dentener et al., 1996; Jacob, 2000; Zhu et al., 2010), the production of halogen radicals (Thornton et al., 2010; Phillips et al., 2012; Wang et al., 2016), and possibly also direct removal of O$_3$ due to heterogeneous uptake (de Reus et al., 2000).

2.1.3 NO$_3$ radicals and N$_2$O$_5$

Oxidation of NO$_2$ by O$_3$ (Reaction R13) is the dominant source for NO$_3$ radicals in the troposphere. NO$_3$ radicals further react with NO$_2$ to form N$_2$O$_5$ (Reaction R14), which can thermally dissociate back to NO$_3$ and NO$_2$ (Reaction R15)
NO$_2$ + O$_3$ \rightarrow NO$_3$ + O$_2$ \hspace{1cm} (R13)

NO$_2$ + NO$_3$ + M \rightarrow N$_2$O$_5$ + M \hspace{1cm} (R14)

N$_2$O$_5$ + M \rightarrow NO$_2$ + NO$_3$ + M \hspace{1cm} (R15)

The equilibrium between NO$_3$ and N$_2$O$_5$ is usually reached within several seconds under typical tropospheric conditions. Therefore, NO$_3$ radicals are considered to be in dynamic equilibrium with N$_2$O$_5$, as confirmed by a number of field measurements (Brown and Stutz, 2012, and references therein). As a result, NO$_3$ and N$_2$O$_5$ are discussed together here. Recently reactions of Criegee radicals with NO$_2$ are proposed as another source for NO$_3$ radicals (Ouyang et al., 2013), though atmospheric significance of this source has not been systematically assessed yet (Sobanski et al., 2016).

Photolysis of NO$_3$ (Reaction R17) and its reaction with NO (Reaction R16) are both very fast (Wayne et al., 1991), and atmospheric chemistry of NO$_3$ (and thus N$_2$O$_5$) is only important during nighttime, though the daytime presence of NO$_3$ and N$_2$O$_5$ in the troposphere has also been reported (Brown and Stutz, 2012). Therefore, for a sink to be important for NO$_3$ or N$_2$O$_5$, the lifetime with respect to this sink should be comparable to or shorter than a half-day.

NO$_3$ + NO \rightarrow NO$_2$ + NO$_2$ \hspace{1cm} (R16)

NO$_3$ + (λ < 11 080 nm) \rightarrow NO + O$_2$ \hspace{1cm} (R17a)

NO$_3$ + (λ < 587 nm) \rightarrow NO$_2$ + O \hspace{1cm} (R17b)

The predominant sinks for tropospheric NO$_3$ and N$_2$O$_5$ include reactions with unsaturated VOCs, reaction with dimethyl sulfite in the marine and coastal troposphere, and heterogeneous uptake by aerosol particles and cloud droplets (Brown and Stutz, 2012). The gas-phase reaction of N$_2$O$_5$ with water vapor was investigated by a laboratory study (Wahner et al., 1998), and several field measurements have suggested that this reaction is unlikely to be significant in the troposphere (Brown et al., 2009; Crowley et al., 2010b; Brown and Stutz, 2012). Lifetimes of NO$_3$ and N$_2$O$_5$ during nighttime depend on a variety of atmospheric conditions (including concentrations of VOCs and aerosols, aerosol composition and mixing state, RH, etc.) (Brown and Stutz, 2012), exhibiting large spatial and temporal variations. As shown in Table 1, NO$_3$ lifetimes typically range from tens of seconds to 1 h, while N$_2$O$_5$ lifetimes are usually longer, spanning from < 10 min to several hours.

2.2 Laboratory studies of atmospheric heterogeneous reactions of mineral dust particles

Kinetics of heterogeneous reactions can be determined by measuring the decay and/or production rates of trace gases in the gas phase (Hanisch and Crowley, 2001; Usher et al., 2003b; Liu et al., 2008a; Vlasenko et al., 2009; Pradhan et al., 2010a; Tang et al., 2012; Zhou et al., 2014). Alternatively, reaction rates can also be measured by detecting changes in particle composition (Goodman et al., 2000; Sullivan et al., 2009a; Li et al., 2010; Tong et al., 2010; Ma et al., 2012; Kong et al., 2014). A number of experimental techniques have been developed and utilized to investigate heterogeneous reactions of mineral dust particles, as summarized in Table 2. It should be emphasized that this list is far from being complete and only techniques mentioned in this review paper are included. These techniques can be classified into three groups according to the way particles under investigation exist: (1) particle ensembles deposited on a substrate, (2) an ensemble of particles as an aerosol, and (3) single particles, either levitated or deposited on a substrate. Detailed description of these techniques can be found in several previous review articles and monographies (Usher et al., 2003a; Cwiertny et al., 2008; Crowley et al., 2010a; Kolb et al., 2010; Akimoto, 2016) and thus is not repeated here. Instead, in this paper we intend to discuss two critical issues in determining and reporting uptake coefficients for heterogeneous reactions of mineral dust particles, i.e., (1) surface area available for heterogeneous uptake and (2) time dependence of heterogeneous kinetics. In addition to these two important issues, it should also be mentioned that single minerals (e.g., illite, calcite, and quartz) and authentic dust samples (e.g., Saharan dust and Arizona test dust) may not necessarily reflect mineral dust particles found in the troposphere. After being emitted into the troposphere, mineral dust particles will undergo heterogeneous reactions and cloud processing (Usher et al., 2003a; Tang et al., 2016a), forming soluble inorganic and organic materials coated on dust particles (Sullivan et al., 2007; Sullivan and Prather, 2007; Formenti et al., 2011; Fitzgerald et al., 2015). Therefore, heterogeneous reactivity of ambient mineral dust particles can be largely different from those used in laboratory studies.

For experiments in which single particles are used, surface techniques, including Raman spectroscopy (Liu et al., 2008b; Zhao et al., 2011a), scanning electron microscopy (SEM) (Krueger et al., 2003a; Laskin et al., 2005b), and secondary ion mass spectroscopy (SIMS) (Harris et al., 2012), can usually be utilized to characterize their compositional and morphological changes simultaneously. Nevertheless, it is still nontrivial to derive quantitative information for most of the surface techniques. In addition to being deposited on a substrate, single particles can also be levitated by an electrodynamic balance (Lee and Chan, 2007; Pope et al., 2010) or optical levitation (Tong et al., 2011; Krieger et al., 2012; Rkiouak et al., 2014), and Raman spectroscopy can be used to measure the compositional changes of levitated particles (Lee et al., 2008; Tang et al., 2014a).

2.2.1 Surface area available for heterogeneous uptake

As described by Eq. (1), surface area concentration is required to derive uptake coefficients from measured pseudo-first-order reaction rates. However, it can be a difficult task to obtain surface area concentrations of particles. In fact, vari-
This issue becomes even more severe for experiments using mineral dust particles deposited on a substrate. In these experiments the surface area available for heterogeneous uptake is assumed to be either the projected area of dust particles (usually also referred to as the geometrical area of dust particles, equal to the geometrical surface area of the sample holder) or the BET surface area of the dust sample. Descriptions of methods used in measuring BET surface area of solid particles can be found elsewhere (Sing, 2014; Naderi, 2015). Multiple layers of powdered dust samples are typically deposited on a substrate. Consequently, it is not uncommon that the BET surface area is several orders of magnitude larger than the projected area (Nicolas et al., 2009; Liu et al., 2010; Tong et al., 2010). The surface area actually available for heterogeneous uptake falls between the two extreme cases and varies for different studies. When gas molecules are transported towards the top layer of the powdered sample, they may collide with the surface of particles on the top layer, be adsorbed, and undergo heterogeneous reaction; they may also be transported within the interior space and then collide and react with particles in the underlying layers. The depth that gas molecules can reach depends on the microstructure of the powdered sample (e.g., how compactly particles are stacked) as well as their reactivity towards the surface. For a very fast heterogeneous reaction it is likely that only the topmost few layers of a powdered sample are accessible for the reactive trace gases, whereas more underlying layers become available for slower uptake processes. Therefore, uptake coefficients reported by experiments using aerosol samples, if available, are preferred and used in this study to estimate the atmospheric importance of heterogeneous reactions. We note that a similar strategy has also been adopted by the IUPAC task group (Crowley et al., 2010a).

In theory, transport of gaseous molecules within the interior space of the powdered sample coupled to the reaction with the particle surface can be described by mathematical models. The KML (Keyser–Moore–Leu) model, initially developed to describe diffusion and reaction of gaseous molecules in porous ice (Keyser et al., 1991, 1993), has been used to derive uptake coefficients for heterogeneous reactions of mineral dust particles. An “effectiveness factor” was determined and used in the KML model to account for the contribution of underlying layers to the observed heterogeneous uptake. One major drawback of the KML model (and other models with similar principles but different complexities) is that it can be difficult to measure or accurately calculate diffusion constants of reactive trace gases through powdered samples (Underwood et al., 2000).

Grassian and coworkers developed a simple method to calculate surface area available for heterogeneous uptake (Underwood et al., 2000; Li et al., 2002). If the thickness of a powdered sample is smaller than the interrogation depth of the reactive trace gas (i.e., depth of the sample which can actually be reached by the reactive trace gas), all the particles should be accessible for heterogeneous uptake. In such cases the sorption in measured surface area available for heterogeneous uptake is one of the main reasons why large differences in uptake coefficients have been reported by different groups for the same reaction system of interest.

For experiments in which aerosol particles are used, surface area concentrations are typically derived from size distribution measured using an aerodynamic particle sizer (APS) or scanning mobility particle sizer (SMPS). Because of the nonsphericity of mineral dust particles, it is not straightforward to convert aerodynamic and mobility diameters to surface area. It has been reported that the median aspect ratios are in the range of 1.6–1.7 for Saharan dust particles (Chou et al., 2008; Kandler et al., 2009) and 1.4–1.5 for Asian dust particles (Okada et al., 2001). In some aerosol chamber studies, surface areas available for heterogeneous uptake are assumed to be equal to the BET (Brunauer–Emmett–Teller) surface areas of dust particles introduced into the chamber (Mogili et al., 2006b; Chen et al., 2011b). Some dust particles are porous, making their BET surface areas much larger than the corresponding geometrical surface areas. The values of γ(N₂O₃) for airborne SiO₂ particles reported by two previous studies (Mogili et al., 2006b; Wagner et al., 2009) differed by almost 2 orders of magnitude. Tang et al. (2014a) suggested that such a large difference is mainly due to the fact that different methods were used to calculate surface area available for heterogeneous uptake. Specifically, Mogili et al. (2006b) used the BET surface area, while Wagner et al. (2009) used Stoke diameters derived from APS measurements to calculate the surface area. Tang et al. (2014a) further found that if the same method is used to calculate surface area concentrations, the values of γ(N₂O₃) reported by the two studies (Mogili et al., 2006b; Wagner et al., 2009) agree fairly well.

Table 2. Abbreviations of experimental techniques used by previous laboratory studies to investigate heterogeneous reactions of mineral dust. Only techniques mentioned in this review paper are included.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFT</td>
<td>Aerosol flow tube</td>
</tr>
<tr>
<td>CIMS</td>
<td>Chemical ionization mass spectrometry</td>
</tr>
<tr>
<td>CLD</td>
<td>Chemiluminescence detector</td>
</tr>
<tr>
<td>CRDS</td>
<td>Cavity ring-down spectroscopy</td>
</tr>
<tr>
<td>CRFT</td>
<td>Coated rod flow tube</td>
</tr>
<tr>
<td>CWFT</td>
<td>Coated wall flow tube</td>
</tr>
<tr>
<td>DRIFTS</td>
<td>Diffuse reflectance infrared Fourier transform spectroscopy</td>
</tr>
<tr>
<td>EC</td>
<td>Environmental chamber</td>
</tr>
<tr>
<td>KC</td>
<td>Knudsen cell reactor</td>
</tr>
<tr>
<td>IC</td>
<td>Ion chromatography</td>
</tr>
<tr>
<td>LIF</td>
<td>Laser-induced fluorescence</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>T-FTIR</td>
<td>Transmission FTIR</td>
</tr>
</tbody>
</table>

This issue becomes even more severe for experiments using mineral dust particles deposited on a substrate. In these experiments the surface area available for heterogeneous uptake is assumed to be either the projected area of dust particles (usually also referred to as the geometrical area of dust particles, equal to the geometrical surface area of the sample holder) or the BET surface area of the dust sample. Descriptions of methods used in measuring BET surface area of solid particles can be found elsewhere (Sing, 2014; Naderi, 2015). Multiple layers of powdered dust samples are typically deposited on a substrate. Consequently, it is not uncommon that the BET surface area is several orders of magnitude larger than the projected area (Nicolas et al., 2009; Liu et al., 2010; Tong et al., 2010). The surface area actually available for heterogeneous uptake falls between the two extreme cases and varies for different studies. When gas molecules are transported towards the top layer of the powdered sample, they may collide with the surface of particles on the top layer, be adsorbed, and undergo heterogeneous reaction; they may also be transported within the interior space and then collide and react with particles in the underlying layers. The depth that gas molecules can reach depends on the microstructure of the powdered sample (e.g., how compactly particles are stacked) as well as their reactivity towards the surface. For a very fast heterogeneous reaction it is likely that only the topmost few layers of a powdered sample are accessible for the reactive trace gases, whereas more underlying layers become available for slower uptake processes. Therefore, uptake coefficients reported by experiments using aerosol samples, if available, are preferred and used in this study to estimate the atmospheric importance of heterogeneous reactions. We note that a similar strategy has also been adopted by the IUPAC task group (Crowley et al., 2010a).

In theory, transport of gaseous molecules within the interior space of the powdered sample coupled to the reaction with the particle surface can be described by mathematical models. The KML (Keyser–Moore–Leu) model, initially developed to describe diffusion and reaction of gaseous molecules in porous ice (Keyser et al., 1991, 1993), has been used to derive uptake coefficients for heterogeneous reactions of mineral dust particles. An “effectiveness factor” was determined and used in the KML model to account for the contribution of underlying layers to the observed heterogeneous uptake. One major drawback of the KML model (and other models with similar principles but different complexities) is that it can be difficult to measure or accurately calculate diffusion constants of reactive trace gases through powdered samples (Underwood et al., 2000).

Grassian and coworkers developed a simple method to calculate surface area available for heterogeneous uptake (Underwood et al., 2000; Li et al., 2002). If the thickness of a powdered sample is smaller than the interrogation depth of the reactive trace gas (i.e., depth of the sample which can actually be reached by the reactive trace gas), all the particles should be accessible for heterogeneous uptake. In such cases the sorption in measured surface area available for heterogeneous uptake is one of the main reasons why large differences in uptake coefficients have been reported by different groups for the same reaction system of interest.

For experiments in which aerosol particles are used, surface area concentrations are typically derived from size distribution measured using an aerodynamic particle sizer (APS) or scanning mobility particle sizer (SMPS). Because of the nonsphericity of mineral dust particles, it is not straightforward to convert aerodynamic and mobility diameters to surface area. It has been reported that the median aspect ratios are in the range of 1.6–1.7 for Saharan dust particles (Chou et al., 2008; Kandler et al., 2009) and 1.4–1.5 for Asian dust particles (Okada et al., 2001). In some aerosol chamber studies, surface areas available for heterogeneous uptake are assumed to be equal to the BET (Brunauer–Emmett–Teller) surface areas of dust particles introduced into the chamber (Mogili et al., 2006b; Chen et al., 2011b). Some dust particles are porous, making their BET surface areas much larger than the corresponding geometrical surface areas. The values of γ(N₂O₃) for airborne SiO₂ particles reported by two previous studies (Mogili et al., 2006b; Wagner et al., 2009) differed by almost 2 orders of magnitude. Tang et al. (2014a) suggested that such a large difference is mainly due to the fact that different methods were used to calculate surface area available for heterogeneous uptake. Specifically, Mogili et al. (2006b) used the BET surface area, while Wagner et al. (2009) used Stoke diameters derived from APS measurements to calculate the surface area. Tang et al. (2014a) further found that if the same method is used to calculate surface area concentrations, the values of γ(N₂O₃) reported by the two studies (Mogili et al., 2006b; Wagner et al., 2009) agree fairly well.

Table 2. Abbreviations of experimental techniques used by previous laboratory studies to investigate heterogeneous reactions of mineral dust. Only techniques mentioned in this review paper are included.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFT</td>
<td>Aerosol flow tube</td>
</tr>
<tr>
<td>CIMS</td>
<td>Chemical ionization mass spectrometry</td>
</tr>
<tr>
<td>CLD</td>
<td>Chemiluminescence detector</td>
</tr>
<tr>
<td>CRDS</td>
<td>Cavity ring-down spectroscopy</td>
</tr>
<tr>
<td>CRFT</td>
<td>Coated rod flow tube</td>
</tr>
<tr>
<td>CWFT</td>
<td>Coated wall flow tube</td>
</tr>
<tr>
<td>DRIFTS</td>
<td>Diffuse reflectance infrared Fourier transform spectroscopy</td>
</tr>
<tr>
<td>EC</td>
<td>Environmental chamber</td>
</tr>
<tr>
<td>KC</td>
<td>Knudsen cell reactor</td>
</tr>
<tr>
<td>IC</td>
<td>Ion chromatography</td>
</tr>
<tr>
<td>LIF</td>
<td>Laser-induced fluorescence</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>T-FTIR</td>
<td>Transmission FTIR</td>
</tr>
</tbody>
</table>
this case, uptake coefficients calculated using the projected area should exhibit a linear mass dependence. The linear mass-dependent (LMD) regime can be experimentally determined, with an example shown in Fig. 2. Figure 2 suggests that when the TiO$_2$ sample mass is less than 0.15 mg cm$^{-1}$, the projected-area-based uptake coefficients depend linearly on the sample mass. If measurements are carried out within the LMD regime, surfaces of all the particles are available for heterogeneous uptake and the BET surface area should be used to calculate uptake coefficients (Underwood et al., 2000; Romanias et al., 2012a; Bedjanian et al., 2013a).

Another way to circumvent the problem due to diffusion within the interior space of powdered samples is to use particles fewer than one layer (Hoffman et al., 2003a, b). This experimental strategy was used to investigate heterogeneous reactions of NaCl with HNO$_3$, N$_2$O$_5$, and ClONO$_2$, and a mathematical model was developed to calculate the effective surface area exposed to reactive trace gases (Hoffman et al., 2003a, b). Nevertheless, to our knowledge this method has not yet been used by laboratory studies of heterogeneous reactions of mineral dust particles.

2.2.2 Time dependence of heterogeneous kinetics

When exposed to reactive trace gases, mineral dust surface may become deactivated and thus gradually lose its heterogeneous reactivity. Figure 3 shows three representative examples of changes in the measured concentration of a reactive trace gas, X, after exposure to mineral dust particles. For the case shown in Fig. 3a, no surface active sites are consumed and the uptake rate is independent of reaction time. Figure 3b displays another case in which surface reactive sites may be consumed and heterogeneous uptake will cease after some exposure. In addition, as shown in Fig. 3c, an initial large uptake rate gradually decreases with time to a nonzero constant value for longer exposure (i.e., the heterogeneous reaction reaches a “steady state”).

In atmospheric chemistry community, heterogeneous reactions are usually treated as pseudo-first-order processes (with respect to reactive trace gases), as implied by Eq. (1). However, deactivation of mineral dust surfaces has been reported for a variety of trace gases by experiments using particle ensembles deposited on a substrate (Underwood et al., 2001;
Hanisch and Crowley, 2003a; Ndour et al., 2009; Tang et al., 2010; Zhou et al., 2012; Romanias et al., 2013; Liu et al., 2015). Therefore, uptake coefficients are normally set to be time dependent (instead of assuming to be a constant), such that Eq. (1) is still valid for time-dependent heterogeneous kinetics. Many studies (Michel et al., 2003; Seisel et al., 2005; Karagulian et al., 2006; Wang et al., 2011; El Zein et al., 2014) have reported initial and/or steady-state uptake coefficients (γ_0 and γ_{ss}, respectively). What makes interpreting reported uptake coefficients more difficult is that even for the same heterogeneous reaction, γ_0 and γ_{ss} may exhibit dependence on experimental conditions (e.g., dust sample mass, trace-gas concentration, temperature, etc.). For example, it takes less time for a reaction to reach steady state when higher concentrations are used for the same reactive trace gas. In many cases, surface may be completely deactivated given sufficient reaction time. Furthermore, γ_0 is usually reported as the first measurable uptake coefficient, which largely depends on the response time (and time resolution) of the instrument used to detect the trace gas.

In aerosol flow tube experiments, on the other hand, exposure time of mineral dust aerosol particles to trace gases are very short (typically < 1 min). Therefore, significant surface deactivation is not observed and decays of trace gases can usually be well described by pseudo-first-order kinetics with time-independent uptake coefficients (Vlasenko et al., 2006; Pradhan et al., 2010a; Tang et al., 2012; Matthews et al., 2014).

Ideally laboratory studies of heterogeneous reactions should be carried out at or at least close to atmospherically relevant conditions, such that experimental results can be directly used. However, due to experimental challenges, laboratory studies are usually performed on much shorter timescales (from < 1 min to a few hours, compared to the average residence time of several days for mineral dust aerosol) and with much higher trace-gas concentrations. Alternatively, measurements can be conducted over a wide range of experimental conditions in order for fundamental physical and chemical processes to be deconvoluted and corresponding rate constants to be determined (Kolb et al., 2010; Davidovits et al., 2011; Pöschl, 2011). With more accurate kinetic data, kinetic models which integrate these fundamental processes can be constructed and applied to predict uptake coefficients for atmospherically relevant conditions (Ammann and Poschl, 2007; Pöschl et al., 2007; Shiraiwa et al., 2012; Berkemeier et al., 2013). Unfortunately, measurements of this type are resource-demanding. In practice laboratory studies of heterogeneous kinetics are usually carried out under very limited experimental conditions. Therefore, there is a great need to invest more resources in fundamental laboratory research.

Table 3. Uptake coefficients used in this work to calculate lifetimes of OH, HO$_2$, H$_2$O$_2$, O$_3$, HCHO, HONO, NO$_3$, and N$_2$O$_5$ with respect to heterogeneous reactions with mineral dust aerosol.

<table>
<thead>
<tr>
<th>Species</th>
<th>Uptake coefficient</th>
<th>Species</th>
<th>Uptake coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
<td>0.2</td>
<td>HCHO</td>
<td>1 $\times 10^{-5}$</td>
</tr>
<tr>
<td>HO$_2$</td>
<td>0.031</td>
<td>HONO</td>
<td>1 $\times 10^{-6}$</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>1 $\times 10^{-3}$</td>
<td>NO$_3$</td>
<td>0.018</td>
</tr>
<tr>
<td>O$_3$</td>
<td>4.5 $\times 10^{-6}$</td>
<td>N$_2$O$_5$</td>
<td>0.020</td>
</tr>
</tbody>
</table>

3 Heterogeneous reactions of mineral dust particles with tropospheric oxidants and their direct precursors

The importance of a heterogeneous reaction for removal of a trace gas, X, is determined by the uptake coefficient and the aerosol surface area concentration, as suggested by Eq. (1). It also depends on the rates of other removal processes in competition, although it is not uncommon that this aspect has not been fully taken into account. In this section, previous laboratory studies of heterogeneous reactions of mineral dust particles with OH, HO$_2$, H$_2$O$_2$, O$_3$, HCHO, HONO, NO$_3$, and N$_2$O$_5$ are summarized, analyzed, and discussed. After that, the lifetimes of each trace gas with respect to their heterogeneous reactions with mineral dust are calculated, using uptake coefficients listed in Table 3, followed by discussion of the relative importance of heterogeneous reactions for their removal in the troposphere. In addition, we also discuss representative modeling studies to further demonstrate and illustrate the importance of these heterogeneous reactions.

Uptake coefficients which are used in this paper to calculate lifetimes with respect to heterogeneous reactions with mineral dust particles are shown in Table 3. The IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation has been compiling and evaluating kinetic data for atmospheric heterogeneous reactions (Crowley et al., 2010a), and preferred uptake coefficients are also recommended. It should be noted that uptake coefficients listed in Table 3 do not intend to compete with those recommended by the IUPAC task group. Instead, some of our values are largely based on their recommended values, if available and proper. We also acknowledge that a single uptake coefficient may not always be enough to describe the kinetics of a heterogeneous reaction of mineral dust, because (1) uptake kinetics may change with reaction time, as discussed in Sect. 2.2; (2) uptake kinetics are also affected by particle mineralogy and composition, RH, temperature, the copresence of other reactive trace gases, etc.; and (3) for some reactive trace gases, such as O$_3$, the uptake coefficients may strongly depend on their concentrations.

The pseudo-first-order loss rate depends on the aerosol surface area concentration, which depends on aerosol num-

www.atmos-chem-phys.net/17/11727/2017/
The average γ(OH) was determined to be 0.20 for Al$_2$O$_3$ at room temperature under dry conditions (Bertram et al., 2001), using a coated wall flow tube coupled to chemical ionization mass spectrometry (CIMS). In a following study, the RH dependence of γ(OH) on SiO$_2$ and Al$_2$O$_3$ at room temperature was investigated (Park et al., 2008). It is found that γ(OH) increased from 0.032 ± 0.007 at 0% RH to 0.098 ± 0.022 at 33% RH for SiO$_2$ and from 0.045 ± 0.005 at 0% RH to 0.084 ± 0.012 at 38% RH for Al$_2$O$_3$ (Park et al., 2008).

Recently a coated rod flow tube was used to investigate uptake of OH radicals by Arizona test dust (ATD) particles (Bedjanian et al., 2013b) as a function of temperature (275–320 K) and RH (0.03–25.9%). Gradual surface deactivation was observed, and the initial uptake coefficient was found to be independent of temperature and decrease with increasing RH, given by Eq. (7):

$$\gamma_0 = \frac{0.2}{(1 + RH^{0.36})},$$

with an estimated uncertainty of ±30%. Please note that uptake coefficients reported by Bedjanian et al. (2013b) are based on the geometrical area of the rod coated with ATD particles and thus should be considered as the upper limit. No effect of UV radiation, with J(NO$_2$) up to 0.012 s$^{-1}$, was observed (Bedjanian et al., 2013b). In addition, H$_2$O and H$_2$O$_2$ were found to be the major and minor products in the gas phase, respectively (Bedjanian et al., 2013b), as shown in Fig. 4.

Figure 4. Concentrations of H$_2$O (solid circles) and H$_2$O$_2$ (open circles) produced in the gas phase due to heterogeneous reaction of OH radicals with ATD particles. Reprinted with permission from Bedjanian et al. (2013b). © 2013 American Chemical Society.
Sect. 2.1.1, lifetimes of tropospheric OH are in the range of 1 s or less in very clean regions and < 0.1 s in polluted and forested areas, much shorter than $\tau_{\text{het}}(\text{OH})$. Even if $\gamma(\text{OH})$ is assumed to be 1, for uptake by 1 μm particles $\gamma_{\text{eff}}(\text{OH})$ is calculated to be 0.23, which is only 15 % larger than what we use to calculate $\tau_{\text{het}}(\text{OH})$. Therefore, it can be concluded

As shown in Fig. 5, $\gamma(\text{OH})$ reported by previous flow tube studies, except that on SiO$_2$ particles reported by Gershenzon et al. (1986), shows reasonably good agreement, considering that different minerals were used. Reported $\gamma(\text{OH})$ is larger than 0.02 in general, suggesting that mineral dust exhibits relatively large reactivity towards OH radicals. Discrepancies are also identified from data presented in Fig. 5, with the most evident one being the effect of RH. Park et al. (2008) found that $\gamma(\text{OH})$ increased significantly with RH for both SiO$_2$ and Al$_2$O$_3$, while Bedjanian et al. (2013b) suggested that $\gamma(\text{OH})$ showed a negative dependence on RH. It is not clear yet whether different minerals used by these two studies can fully account for the different RH dependence observed. Furthermore, a positive dependence of $\gamma(\text{OH})$ on temperature was found by Suh et al. (2000) for TiO$_2$, α-Al$_2$O$_3$, and SiO$_2$, while Bogart et al. (1997) reported a negative temperature effect for deposited SiO$_2$ film and no significant dependence on temperature was found for ATD (Bedjanian et al., 2013b).

A $\gamma(\text{OH})$ value of 0.2, reported by Bedjanian et al. (2013b) for ATD, is used in our present work to evaluate the importance of heterogeneous uptake of OH radicals by mineral dust aerosol. According to Eq. (6), dust mass loadings of 10, 100, and 1000 μg m$^{-3}$ correspond to $\tau_{\text{het}}(\text{OH})$ of ~ 25 min, 150, and 15 s with respect to heterogeneous uptake by mineral dust. As discussed in Sect. 2.1.1, lifetimes of tropospheric OH are in the range of

<table>
<thead>
<tr>
<th>Trace gases</th>
<th>Dust</th>
<th>Reference</th>
<th>T (K)</th>
<th>Concentration (molecule cm$^{-3}$)</th>
<th>Uptake coefficients</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
<td>TiO$_2$</td>
<td>Suh et al. (2000)</td>
<td>308 to 350</td>
<td>$\sim 4 \times 10^{12}$</td>
<td>(2–4) $\times 10^{-4}$, increasing with temperature</td>
<td>LIF</td>
</tr>
<tr>
<td></td>
<td>SiO$_2$</td>
<td>Gershenzon et al. (1986)</td>
<td>253–343</td>
<td>$< 2 \times 10^{12}$</td>
<td>0.0056 ± 0.002, independent of temperature</td>
<td>CWFT-EPR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suh et al. (2000)</td>
<td>308 to 350</td>
<td>$\sim 4 \times 10^{12}$</td>
<td>(2–4) $\times 10^{-3}$, increasing with temperature</td>
<td>LIF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Park et al. (2008)</td>
<td>RT</td>
<td>$\sim 4 \times 10^{11}$</td>
<td>0.032 ± 0.007 at 0 % RH and 0.098 ± 0.022 at 33 % RH</td>
<td>CWFT-CIMS</td>
</tr>
<tr>
<td></td>
<td>Al$_2$O$_3$</td>
<td>Gershenzon et al. (1986)</td>
<td>253–343</td>
<td>$< 2 \times 10^{12}$</td>
<td>0.04 ± 0.02, independent of temperature</td>
<td>CWFT-EPR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suh et al. (2000)</td>
<td>308 to 350</td>
<td>$\sim 4 \times 10^{12}$</td>
<td>(5–6) $\times 10^{-3}$, increasing with temperature</td>
<td>LIF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bertram et al. (2001)</td>
<td>RT</td>
<td>$(1–100) \times 10^3$</td>
<td>0.20</td>
<td>CWFT-CIMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Park et al. (2008)</td>
<td>RT</td>
<td>$\sim 4 \times 10^{11}$</td>
<td>0.045 ± 0.005 at 0 % RH and 0.084 ± 0.012 at 38 % RH</td>
<td>CWFT-CIMS</td>
</tr>
<tr>
<td></td>
<td>ATD</td>
<td>Bedjanian et al. (2013b)</td>
<td>275–320</td>
<td>(0.4–5.2) $\times 10^{12}$</td>
<td>0.20 at 0 % RH, showing a negative RH dependence but no dependence on temperatures</td>
<td>CRFT-MS</td>
</tr>
<tr>
<td>HO$_2$</td>
<td>ATD</td>
<td>Bedjanian et al. (2013a)</td>
<td>275–320</td>
<td>(0.35–3.3) $\times 10^{12}$</td>
<td>0.067 ± 0.004 at 0 % RH, showing a negative RH dependence (0.02–94 %) but no dependence on temperature</td>
<td>CRFT-MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matthews et al. (2014)</td>
<td>291 ± 2</td>
<td>(3–10) $\times 10^8$</td>
<td>0.018 ± 0.006 when HO$_2$ concentration was 3 $\times 10^9$ molecule cm$^{-3}$ and 0.031 ± 0.008 when HO$_2$ concentration was 3 $\times 10^8$ molecule cm$^{-3}$. No RH (5–76 %) dependence was observed</td>
<td>AFF-FAGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forsterite</td>
<td>James et al. (2017)</td>
<td>293</td>
<td>1.6×10^9</td>
<td>(4.3 ± 0.4) $\times 10^{-3}$ at 12 % RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Olivine</td>
<td>James et al. (2017)</td>
<td>293</td>
<td>1.6×10^9</td>
<td>(6.9 ± 1.2) $\times 10^{-2}$ at 10 % RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fayalite</td>
<td>James et al. (2017)</td>
<td>293</td>
<td>1.6×10^9</td>
<td>(7.3 ± 0.4) $\times 10^{-2}$ at 10 % RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TiO$_2$</td>
<td>Moon et al. (2017)</td>
<td>293</td>
<td>1.6×10^9</td>
<td>0.021 ± 0.001 at ~ 11 % RH, 0.029 ± 0.005 at ~ 45 %, and 0.037 ± 0.007 at ~ 66 %, showing a positive dependence on RH</td>
</tr>
</tbody>
</table>

Table 4. Summary of previous laboratory studies on heterogeneous reactions of mineral dust with OH and HO$_2$ radicals. RT: room temperature.
that heterogeneous reaction with mineral dust aerosol is not a significant sink for OH radicals in the troposphere.

3.1.2 \(\text{HO}_2 \) radicals

A few laboratory studies have investigated heterogeneous uptake of \(\text{HO}_2 \) radicals by mineral dust particles. Bedjanian et al. (2013a) used a coated rod flow tube to study the interaction of \(\text{HO}_2 \) radicals with ATD film as a function of temperature and RH. Surface deactivation was observed, and \(\gamma_0 \), based on the geometrical area of dust films, was determined to be 0.067 ± 0.004 under dry conditions (Bedjanian et al., 2013a). The initial uptake coefficient, independent of temperature, was found to decrease with RH, given by Eq. (8):

\[
\gamma_0 = 1.2 \left(18.7 + \text{RH}^{1.1} \right).
\]

with an estimated uncertainty of ±30 %. UV radiation, with \(J(\text{NO}_2) \) ranging from 0 to 0.012 s\(^{-1}\), did not affect uptake kinetics significantly. In addition, the yield of \(\text{H}_2\text{O}_2 \) (g), defined as the ratio of formed \(\text{H}_2\text{O}_2 \) (g) molecules to consumed \(\text{HO}_2 \) radicals, was determined to be < 5 % (Bedjanian et al., 2013a). In the second study (Matthews et al., 2014), an aerosol flow tube was deployed to measure \(\gamma(\text{HO}_2) \) onto ATD aerosol particles at 291 ± 2 K, with \(\text{HO}_2 \) detection via the fluorescence assay by the gas expansion technique. No significant effect of RH in the range of 5–76 % was observed, and \(\gamma(\text{HO}_2) \) was reported to be 0.031 ± 0.008 for [\(\text{HO}_2 \)] of 3 × 10\(^8\) molecule cm\(^{-3}\) and 0.018 ± 0.006 for [\(\text{HO}_2 \)] of 1 × 10\(^9\) molecule cm\(^{-3}\) (Matthews et al., 2014). In addition, \(\gamma(\text{HO}_2) \) was found to decrease with increasing reaction time. The negative dependence of \(\gamma(\text{HO}_2) \) on [\(\text{HO}_2 \)] and reaction time implies that ATD surface is gradually deactivated upon exposure to \(\text{HO}_2 \) radicals, as directly observed by Bedjanian et al. (2013a).

Figure 6 shows the effect of RH on \(\gamma(\text{HO}_2) \) for ATD particles. A quick look at Fig. 6 could lead to the impression that the values of \(\gamma(\text{HO}_2) \) reported by two previous studies (Bedjanian et al., 2013a; Matthews et al., 2014) agree relatively well, especially considering that two very different experimental techniques were used. Nevertheless, Matthews et al. (2014), who conducted their measurements with initial [\(\text{HO}_2 \)] which are 3–4 orders of magnitude lower than those used by Bedjanian et al. (2013a), found a significant negative dependence of \(\gamma(\text{HO}_2) \) on initial [\(\text{HO}_2 \)]. If this trend can be further extrapolated to higher initial [\(\text{HO}_2 \)], one may expect that if carried out with initial [\(\text{HO}_2 \)] similar to those used by Bedjanian et al. (2013a), Matthews et al. (2014) may find much smaller \(\gamma(\text{HO}_2) \). In addition, these two studies also suggest very different RH effects, as is evident from Fig. 6.

In a very recent study (Moon et al., 2017), heterogeneous reaction of \(\text{HO}_2 \) with TiO\(_2\) aerosol particles was examined as a function of RH at room temperature. As shown in Fig. 6, \(\gamma(\text{HO}_2) \) was observed to depend on RH, increasing from 0.021 ± 0.001 at ∼11 % RH to 0.029 ± 0.005 at ∼45 % and 0.037 ± 0.007 at ∼66 %. More specifically, it has been shown that for the RH range covered (11–66 %), \(\gamma(\text{HO}_2) \) depends linearly on the amount of water adsorbed on TiO\(_2\) particles, revealing the critical role adsorbed water plays in heterogeneous uptake of \(\text{HO}_2 \) radicals by TiO\(_2\). Apart from these displayed in Fig. 6, the uptake of \(\text{HO}_2 \) by analogues of meteoric smoke particles was also examined at room temperature (James et al., 2017), using an aerosol flow tube. At (10 ± 1) % RH, the uptake coefficient was determined to be 0.069 ± 0.012 for olivine (MgFeSiO\(_4\)), 0.073 ± 0.004 for fayalite (Fe\(_2\)SiO\(_4\)), and 0.0043 ± 0.0004 for forsterite (Mg\(_2\)SiO\(_4\)). It appears that compared to meteoric smoke particles which do not contain Fe, Fe-containing meteoric smoke particles show much larger heterogeneous reactivity towards \(\text{HO}_2 \) radicals. The experimental result indicates a catalytic role of Fe in \(\text{HO}_2 \) uptake, as supported by electronic structure calculations (James et al., 2017). Though its tropospheric relevance is limited, this study provides valuable mechanistic insights into the heterogeneous reaction of mineral dust with \(\text{HO}_2 \) radicals.

For reasons discussed in Sect. 2.2.1, \(\gamma(\text{HO}_2) \) reported by Matthews et al. (2014) using ATD aerosol samples is used to calculate \(\tau_{\text{net}}(\text{HO}_2) \) with respect to uptake onto mineral dust. Another reason that the data reported by Matthews et al. (2014) are preferred is that [\(\text{HO}_2 \)] used in this study was low enough to be of direct atmospheric relevance.
As a result, $\gamma(\text{HO}_2)$ measured at lower initial [HO$_2$] (3 × 104 molecule cm$^{-3}$), equal to 0.031 ± 0.008, is adopted in our current work to assess the significance of HO$_2$ uptake by mineral dust. Using Eq. (6), $t_{act}(\text{HO}_2)$ is estimated to be 2.2, 22, and 222 min for dust mass concentrations of 1000, 100, and 10 µg m$^{-3}$, respectively. Typical HO$_2$ lifetimes in the troposphere, as summarized in Table 1, show large variability, ranging from <1 s (Ren et al., 2003) to >30 min (Whalley et al., 2011). Therefore, dust aerosol with moderate mass concentrations could be a significant tropospheric HO$_2$ sink, except in regions with very high NO levels.

The importance of heterogeneous uptake as a HO$_2$ sink in the troposphere has also been demonstrated by several sophisticated modeling studies. For example, it is found that while standard gas-phase chemical mechanism used by the GEOS-Chem model would overestimate HO$_2$ and H$_2$O$_2$ concentrations observed in the Arctic troposphere in the spring, including heterogeneous reaction of HO$_2$ with an average $\gamma(\text{HO}_2)$ of >0.1 in the model could better reproduce the measured concentrations and vertical profiles of HO$_2$ and H$_2$O$_2$ (Mao et al., 2010a). Though not directly relevant for mineral dust aerosol, this study provided strong evidence that heterogeneous uptake can be an important but yet not fully recognized sink for tropospheric HO$_2$ radicals (Mao et al., 2010a). Using a global tropospheric model, Macintyre and Evans (2011) analyzed the sensitivity of model output to $\gamma(\text{HO}_2)$ values used in the model. A global average $\gamma(\text{HO}_2)$ of 0.028 was derived from available laboratory studies (Macintyre and Evans, 2011), and large regional differences in modeled O$_3$ were observed between simulations using $\gamma(\text{HO}_2)$ parameterization developed by Macintyre and Evans (2011) and those using a constant $\gamma(\text{HO}_2)$ of 0.2. This result highlights the importance of accurate determination of $\gamma(\text{HO}_2)$ under different tropospheric conditions (e.g., aerosol composition, RH, and temperature).

The impact of HO$_2$ uptake by mineral dust has also been investigated by several modeling studies. For example, an observation-constrained box model study (Matthews et al., 2014) suggested that heterogeneous reaction with mineral dust could result in >10% reduction in HO$_2$ concentrations in Cape Verde, using a $\gamma(\text{HO}_2)$ of 0.038. A WRF-Chem simulation, using $\gamma(\text{HO}_2)$ reported by Bedjanian et al. (2013a), showed that heterogeneous uptake by mineral dust could reduce HO$_2$ concentrations by up to 40% over northern India during a premonsoon dust storm (Kumar et al., 2014).

One may assume that heterogeneous reaction of HO$_2$ with aerosol particles leads to the formation of H$_2$O$_2$ (Graedel et al., 1986; Thornton and Abbatt, 2005). A second channel without HO$_2$ formation, i.e., simple decomposition of HO$_2$ radicals to H$_2$O and O$_2$, may also be important (Bedjanian et al., 2013a; Mao et al., 2013a). Atmospheric impacts can be very different for these two mechanisms. While the second pathway represents a net sink for HO$_2$ in the troposphere, the first channel only converts HO$_2$ to H$_2$O$_2$ via heterogeneous reaction and is thus of limited efficacy as a net sink for HO$_2$ because H$_2$O$_2$ can undergo photolysis to generate OH radicals.

The relative importance of these two mechanisms has been explored by modeling studies. In the modeling work carried out by de Reus et al. (2005), $\gamma(\text{HO}_2)$ was assumed to be 0.2 for heterogeneous uptake onto Saharan dust particles. If no H$_2$O$_2$ is formed in heterogeneous reaction of HO$_2$ with Saharan dust, modeled H$_2$O$_2$ concentrations would agree well with measurements; in contrast, if heterogeneous uptake of HO$_2$ radicals were assumed to produce H$_2$O$_2$, modeled H$_2$O$_2$ concentrations would be much larger than measured values. In a more recent study, Mao et al. (2010a) found that only including the first reaction channel (with H$_2$O$_2$ production) will overestimate H$_2$O$_2$ in the Arctic, while only considering the second channel (without H$_2$O$_2$ production) would cause underestimation of H$_2$O$_2$. Consequently, it seems that both channels have nonnegligible contributions in the troposphere (Mao et al., 2010a). Significant differences in modeled OH, HO$_2$, O$_3$, and sulfate concentrations have been found by a global model study when including two mechanisms separately (Macintyre and Evans, 2011). One experimental study (Bedjanian et al., 2013a) measured gas-phase products for heterogeneous reaction of HO$_2$ radicals with ATD particles and found that gaseous H$_2$O$_2$ formed in this reaction is minor but probably nonnegligible. Considering the importance of mechanisms of heterogeneous reactions of HO$_2$ with mineral dust, further experimental work is required. Furthermore, mineralogy and RH may also impact the yield of H$_2$O$_2$ (g), but these effects are not clear yet.

3.2 H$_2$O$_2$

Pradhan et al. (2010a, b) utilized an aerosol flow tube to investigate heterogeneous interaction of H$_2$O$_2$ with airborne TiO$_2$, Gobi dust, and Saharan dust particles at 295 ± 2 K, and H$_2$O$_2$ was detected by CIMS. A negative dependence of $\gamma(\text{H}_2\text{O}_2)$ on RH was observed for TiO$_2$, with $\gamma(\text{H}_2\text{O}_2)$ decreasing from (1.53 ± 0.11) × 10$^{-3}$ at 15% RH to (6.47 ± 0.74) × 10$^{-4}$ at 40% RH and (5.04 ± 0.58) × 10$^{-4}$ at 70% RH (Pradhan et al., 2010a). In contrast, H$_2$O$_2$ uptake kinetics displayed positive dependence on RH for Gobi and Saharan dust, with $\gamma(\text{H}_2\text{O}_2)$ increasing from (3.33 ± 0.26) × 10$^{-4}$ at 15% RH to (6.03 ± 0.42) × 10$^{-4}$ at 70% RH for Gobi dust and from (6.20 ± 0.22) × 10$^{-4}$ at 15% RH to (9.42 ± 0.41) × 10$^{-4}$ at 70% RH for Saharan dust (Pradhan et al., 2010b). It appears that heterogeneous reactivity of Saharan dust towards H$_2$O$_2$ is significantly higher than Gobi dust.

Heterogeneous interaction of gaseous H$_2$O$_2$ with SiO$_2$ and α-Al$_2$O$_3$ particles was investigated at 298 ± 1 K, using transmission FTIR to probe particle surfaces and a HPLC-based offline technique to measure gaseous H$_2$O$_2$ (Zhao et al., 2011b). It is found that most of H$_2$O$_2$ molecules were physisorbed on the SiO$_2$ surface and a small amount of molecularly adsorbed H$_2$O$_2$ underwent thermal decomposition. In contrast, catalytic decomposition occurred to a large extent.
fraction of H$_2$O$_2$ uptake by α-Al$_2$O$_3$, though some H$_2$O$_2$ molecules were also physisorbed on the surface (Zhao et al., 2011b). The uptake coefficient, based on the BET surface area, was found to be independent of initial H$_2$O$_2$ concentrations (1.27–13.8 ppmv) while largely affected by RH (Zhao et al., 2011b). Values of γ(H$_2$O$_2$) decreased from (1.55 ± 0.14) × 10$^{-8}$ at 2 % RH to (0.81 ± 0.11) × 10$^{-8}$ at 21 % RH for SiO$_2$ particles, and further increases in RH (up to 76 %) did not affect the uptake kinetics (Zhao et al., 2011b). A similar dependence of γ(H$_2$O$_2$) on RH was also observed for α-Al$_2$O$_3$: γ(H$_2$O$_2$) decreased from (1.21 ± 0.04) × 10$^{-7}$ at 2 % RH to (0.84 ± 0.07) × 10$^{-7}$ at 21 % RH, and the effect of RH was not significant for RH in the range of 21–76 % (Zhao et al., 2011b). Compared to SiO$_2$, α-Al$_2$O$_3$ appears to be much more reactive towards H$_2$O$_2$.

In a following study, using the same experimental setup, Zhao et al. (2013) explored the heterogeneous interaction of H$_2$O$_2$ with fresh, HNO$_3$-processed, and SO$_2$-processed CaCO$_3$ particles. The uptake of H$_2$O$_2$ on fresh CaCO$_3$ particles was drastically reduced with increasing RH, indicating that H$_2$O$_2$ and H$_2$O compete for surface reactive sites. In addition, about 85–90 % of H$_2$O$_2$ molecules uptaken by fresh CaCO$_3$ particles undergo decomposition (Zhao et al., 2013). Unfortunately no uptake coefficients were reported (Zhao et al., 2013). Pretreatment of CaCO$_3$ particles with HNO$_3$ or SO$_2$ can significantly affect their heterogeneous reactivity towards H$_2$O$_2$. The effect of HNO$_3$ pretreatment increases with surface coverage of nitrate (formed on CaCO$_3$ particles), showing an interesting dependence on RH. Pretreatment of CaCO$_3$ with HNO$_3$ reduced its heterogeneous reactivity by 30–85 % at 3 % RH, while it led to enhancement of reactivity towards H$_2$O$_2$ by 20–60 % at 25 % RH, a factor of 1–3 at 45 % RH, and a factor of 3–8 at 75 % RH (Zhao et al., 2013). At low RH, formation of Ca(NO$_3$)$_{1.2}$ on the surface could deactivate CaCO$_3$; however, Ca(NO$_3$)$_{1.2}$ may exit as an aqueous film at higher RH (Krueger et al., 2003b; Liu et al., 2008b), consequently leading to large enhancement of H$_2$O$_2$ uptake. Compared to fresh CaCO$_3$, SO$_2$-processed particles always exhibit much higher reactivity towards H$_2$O$_2$, and enhancement factors, increasing with RH, were observed to fall into the range of 3–10 (Zhao et al., 2013).

Heterogeneous uptake of H$_2$O$_2$ by several oxides was investigated at 298 K using a Knudsen cell reactor with H$_2$O$_2$ measured by a quadrupole mass spectrometer (Wang et al., 2011). The value of γ(H$_2$O$_2$), based on the BET surface area of sample powders, was determined to be (1.00 ± 0.11) × 10$^{-4}$ for α-Al$_2$O$_3$, (1.66 ± 0.23) × 10$^{-4}$ for MgO, (9.70 ± 1.95) × 10$^{-5}$ for Fe$_2$O$_3$, and (5.22 ± 0.90) × 10$^{-5}$ for SiO$_2$ (Wang et al., 2011). Surface deactivation occurred for all the surfaces, though complete surface saturation was only observed for SiO$_2$ after extended H$_2$O$_2$ exposure. This may indicate that the uptake of H$_2$O$_2$ by α-Al$_2$O$_3$, MgO, and Fe$_2$O$_3$ are of catalytic nature to some extent (Wang et al., 2011).

Continuous-wave CRDS was employed to detect the depletion of H$_2$O$_2$ and formation of HO$_2$ radicals in the gas phase above TiO$_2$ films which were exposed to gaseous H$_2$O$_2$ and illuminated by a light-emitting diode at 375 nm (Yi et al., 2012). Three different TiO$_2$ samples were investigated, including Degussa P25 TiO$_2$, Aldrich anatase, and Aldrich rutile. H$_2$O$_2$ decays did not occur in the absence of TiO$_2$. In addition, production of HO$_2$ radicals was only observed in the presence of H$_2$O$_2$, and the presence of O$_2$ did not have a significant effect. Therefore, Yi et al. (2012) suggested that the production of HO$_2$ radicals is due to the photodecomposition of H$_2$O$_2$ on TiO$_2$ surfaces. Decays of H$_2$O$_2$ and formation of HO$_2$ are found to vary with TiO$_2$ samples (Yi et al., 2012). Photodegradation of H$_2$O$_2$ is fast for P25 TiO$_2$ samples and much slower for anatase and rutile; furthermore, significant production of HO$_2$ radicals in the gas phase was observed for anatase and rutile but not for P25 TiO$_2$. However, no uptake coefficients were reported by Yi et al. (2012).

Zhou et al. (2012) first explored the temperature dependence of heterogeneous reactivity of mineral dust towards H$_2$O$_2$, using a Knudsen cell reactor coupled to a quadrupole mass spectrometer. The uptake kinetics show negative temperature dependence, with γ(H$_2$O$_2$) (BET surface area based) decreasing from (12.6 ± 2.52) × 10$^{-5}$ at 253 K to (6.08 ± 1.22) × 10$^{-5}$ at 313 K for SiO$_2$ and from (7.11 ± 1.42) × 10$^{-5}$ at 253 K to (3.00 ± 0.60) × 10$^{-5}$ at 313 K for CaCO$_3$ (Zhou et al., 2012). Complete surface deactivation was observed for both dust samples after long exposure to H$_2$O$_2$ (Zhou et al., 2012). In a following study, the effects of temperature on the uptake of H$_2$O$_2$ by ATD and two Chinese dust samples were also investigated (Zhou et al., 2016). Values of γ(H$_2$O$_2$), based on the BET surface area, were observed to decrease with temperature, from (2.71 ± 0.54) × 10$^{-4}$ at 253 K to (1.47 ± 0.29) × 10$^{-4}$ at 313 K for ATD, from (3.56 ± 0.71) × 10$^{-4}$ at 253 K to (2.19 ± 0.44) × 10$^{-4}$ at 313 K for Inner Mongolia desert dust, and from (7.34 ± 1.47) × 10$^{-5}$ at 268 K to (4.46 ± 0.889) × 10$^{-4}$ at 313 K for Xinjiang sierozem (Zhou et al., 2016). In addition, loss of heterogeneous reactivity towards H$_2$O$_2$ was observed for all the three dust samples (Zhou et al., 2016).

A coated rod flow tube was coupled to a quadrupole mass spectrometer to investigate heterogeneous reactions of H$_2$O$_2$ with a variety of mineral dust particles as a function of initial H$_2$O$_2$ concentrations, irradiance intensity, RH, and temperature (Romanias et al., 2012a, 2013; El Zein et al., 2014). Under dark conditions, quick surface deactivation was observed for TiO$_2$. When [H$_2$O$_2$]$_0$ was $< 1 \times 10^{12}$ molecule cm$^{-3}$, γ was found to be independent of [H$_2$O$_2$]$_0$; however, when [H$_2$O$_2$]$_0$ was above this threshold, a negative dependence of γ on [H$_2$O$_2$]$_0$ occurred. At 275 K, γ(based on BET surface area) depended on RH (up to 82 %), given by the following equation (Romanias et al., 2012a):

\[\gamma(\text{dark}) = 4.1 \times 10^{-5}/(1 + RH^{0.65})\] \hspace{1cm} (9)

The uncertainty was estimated to be ±30 %.
Table 5. Summary of previous laboratory studies on heterogeneous reactions of mineral dust with H$_2$O$_2$.

<table>
<thead>
<tr>
<th>Dust</th>
<th>Reference</th>
<th>T (K)</th>
<th>Concentration (molecule cm$^{-3}$)</th>
<th>Uptake coefficient</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>Pradhan et al. (2010a)</td>
<td>295 ± 2</td>
<td>(1.5 ± 0.1) × 1012</td>
<td>1.53 ± 0.11 × 10$^{-2}$ at 15 % RH, (6.47 ± 0.74) × 10$^{-4}$ at 40 % RH, and (5.04 ± 0.58) × 10$^{-5}$ at 70 % RH.</td>
<td>AFT-CIMS</td>
</tr>
<tr>
<td></td>
<td>Romanias et al. (2012a)</td>
<td>275–320</td>
<td>(0.17–120) × 1012</td>
<td>Under dark conditions at 275 K, γ_0 was determined to be (4.1 ± 1.2) × 10$^{-3}$ at 0 % RH, (5.1 ± 1.5) × 10$^{-4}$ at 20 % RH, (3.4±1.0) × 10$^{-5}$ at 40 % RH, (2.7±0.8) × 103 at 60 % RH, and (2.3±0.7) × 10$^{-6}$ at 80 % RH. Surface deactivation was observed under dark conditions, and UV illumination could enhance the steady-state uptake of H$_2$O$_2$.</td>
<td>CRFT-MS</td>
</tr>
<tr>
<td></td>
<td>Yi et al. (2012)</td>
<td>Not stated</td>
<td>(3 ± 1) × 1015</td>
<td></td>
<td>No uptake coefficients were not reported.</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Zhao et al. (2011)</td>
<td>298 ± 1</td>
<td>(3.2–34.5) × 1013</td>
<td>γ(H$_2$O$_2$) decreased from (1.55 ± 0.14) × 10$^{-8}$ at 2 % RH to (0.81 ± 0.11) × 10$^{-8}$ at 21 % RH, and further increases in RH (up to 76 %) did not affect uptake kinetics.</td>
<td>T-FTIR, HPLC</td>
</tr>
<tr>
<td></td>
<td>Wang et al. (2011)</td>
<td>298</td>
<td>(1–25) × 1011</td>
<td>γ: (5.22 ± 0.90) × 10$^{-5}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zhou et al. (2012)</td>
<td>253–313</td>
<td>(0.37–3.7) × 1012</td>
<td>Under dry conditions, γ_0 decreased from (12.6 ± 2.52) × 10$^{-5}$ at 253 K to (6.08 ± 1.22) × 10$^{-5}$ at 313 K.</td>
<td>KC-MS</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>Zhao et al. (2011)</td>
<td>298 ± 1</td>
<td>(3.2–34.5) × 1013</td>
<td>γ(H$_2$O$_2$) decreased from (1.21 ± 0.04) × 10$^{-7}$ at 2 % RH to (0.84 ± 0.07) × 10$^{-7}$ at 21 % RH, and the effect of RH was not significant for RH in the range of 21–76 %.</td>
<td>T-FTIR, HPLC</td>
</tr>
<tr>
<td></td>
<td>Wang et al. (2011)</td>
<td>298</td>
<td>(1–25) × 1011</td>
<td>γ: (1.00 ± 0.11) × 10$^{-5}$; γ: 1.1 × 10$^{-5}$. At 280 K, γ_0 was determined to be (1.1 ± 0.3) × 10$^{-3}$ at 0 % RH, (1.2 ± 0.3) × 10$^{-3}$ at 10 % RH, (3.5 ± 1.0) × 10$^{-5}$ at 40 % RH, and (2.1 ± 0.6) × 10$^{-5}$ at 70 % RH, showing a negative dependence on RH. No significant effect was observed for UV illumination.</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Romanias et al. (2013)</td>
<td>268–320</td>
<td>(0.16–12.6) × 1012</td>
<td>T-FTIR, HPLC</td>
<td></td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>Wang et al. (2011)</td>
<td>298</td>
<td>(1–25) × 1011</td>
<td>γ: (9.70 ± 1.95) × 10$^{-4}$; γ: 5.5 × 10$^{-5}$. At 280 K, γ_0 was determined to be (1.1 ± 0.3) × 10$^{-3}$ at 0 % RH, (1.7 ± 0.5) × 10$^{-4}$ at 10 % RH, (6.7 ± 2.0) × 10$^{-5}$ at 40 % RH, and (4.5 ± 1.4) × 10$^{-5}$ at 70 % RH, showing a negative dependence on RH. No significant effect was observed for UV illumination.</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Romanianis et al. (2013)</td>
<td>268–320</td>
<td>(0.16–12.6) × 1012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>Zhou et al. (2012)</td>
<td>253–313</td>
<td>(0.37–3.7) × 1012</td>
<td>Under dry conditions, γ_0 decreased from (7.11 ± 1.42) × 10$^{-5}$ to (3.00 ± 0.60) × 10$^{-5}$ at 313 K. The uptake of H$_2$O$_2$ on fresh CaCO$_3$ particles decreased drastically with RH. Pretreatment with SO$_2$ always enhances its reactivity towards H$_2$O$_2$, whereas exposure to HNO$_3$ could either enhance or suppress H$_2$O$_2$ uptake, depending on RH. Numerical values for uptake coefficients were reported.</td>
<td>T-FTIR, HPLC</td>
</tr>
<tr>
<td></td>
<td>Zhao et al. (2013)</td>
<td>298 ± 1</td>
<td>1.3 × 1014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATD</td>
<td>El Zein et al. (2014)</td>
<td>268–320</td>
<td>(0.18–5.1) × 1012</td>
<td>Under dark conditions at 275 K, γ_0 was determined to be (4.8 ± 1.4) × 10$^{-7}$ at 0 % RH, (5.8 ± 1.8) × 10$^{-7}$ at 20 % RH, (3.9 ± 1.2) × 10$^{-5}$ at 40 % RH, and (3.0 ± 0.9) × 10$^{-5}$ at 60 % RH. Surface deactivation was observed under dark conditions, and UV illumination could enhance the steady-state uptake of H$_2$O$_2$.</td>
<td>CRFT-MS</td>
</tr>
<tr>
<td></td>
<td>Zhou et al. (2016)</td>
<td>253–313</td>
<td>(0.26–1.2) × 1012</td>
<td>Under dry conditions, γ_0 decreased with temperature, from (2.71 ± 0.54) × 10$^{-8}$ at 253 K to (1.47 ± 0.29) × 10$^{-4}$ at 313 K.</td>
<td>KC-MS</td>
</tr>
<tr>
<td>Saharan dust</td>
<td>Pradhan et al. (2012b)</td>
<td>295 ± 2</td>
<td>(4.2 ± 1012</td>
<td>γ(H$_2$O$_2$) increased from (6.20 ± 0.22) × 10$^{-4}$ at 15 % RH to (9.42 ± 0.41) × 10$^{-4}$ at 70 % RH.</td>
<td>AFT-CIMS</td>
</tr>
<tr>
<td>Gobi dust</td>
<td>Pradhan et al. (2012b)</td>
<td>295 ± 2</td>
<td>(4.2 ± 1012</td>
<td>γ(H$_2$O$_2$) increased from (3.33 ± 0.26) × 10$^{-5}$ at 15 % RH to (6.03 ± 0.42) × 10$^{-4}$ at 70 % RH.</td>
<td>AFT-CIMS</td>
</tr>
<tr>
<td>Chinese dust</td>
<td>Zhou et al. (2016)</td>
<td>253–313</td>
<td>(26–12) × 1012</td>
<td>Under dry conditions, γ_0 decreased with temperature, from (3.56 ± 0.71) × 10$^{-3}$ at 253 K to (2.19 ± 0.44) × 10$^{-4}$ at 313 K for Inner Mongolia desert dust and from (7.34 ± 1.47) × 10$^{-4}$ at 268 K to (4.46 ± 0.89) × 10$^{-5}$ at 313 K for Xinjiang sierozem.</td>
<td>KC-MS</td>
</tr>
<tr>
<td>MgO</td>
<td>Wang et al. (2011)</td>
<td>298</td>
<td>(1–25) × 1011</td>
<td>γ: (1.66 ± 0.23) × 10$^{-2}$; γ: 1.6 ± 10$^{-5}$.</td>
<td>KC-MS</td>
</tr>
</tbody>
</table>
UV illumination (315–400 nm) could lead to photocatalytic decomposition of H$_2$O$_2$ on TiO$_2$ surfaces. The steady-state uptake coefficient, γ_{ss}(UV), increasing linearly with illumination intensity, was found to be independent of RH and depended inversely on [H$_2$O$_2$]$_0$ (Romanias et al., 2012a). When [H$_2$O$_2$]$_0$ is $\sim 5 \times 10^{11}$ molecule cm$^{-3}$ and J(NO$_2$) for UV illumination is 0.012 s$^{-1}$, the dependence of γ_{ss}(UV) on temperature (275–320 K) at 0.3 % RH can be described by the following equation (Romanias et al., 2012a):

$$\gamma_{ss}(UV) = (7.2 \pm 1.9) \times 10^{-4} \times \exp((460 \pm 80)/T).$$

(10)

It has also been found that NO added into the gas flow was converted to NO$_2$ during heterogeneous reaction of H$_2$O$_2$ with TiO$_2$. As shown in Fig. 7, the ratio of consumed NO to formed NO$_2$ is close to 1. This indirect evidence suggests that HO$_2$ radicals (which could convert NO to NO$_2$) were found in the gas phase due to photocatalytic reaction of H$_2$O$_2$ with TiO$_2$ particles (Romanias et al., 2012a).

Gradual surface deactivation was also observed for uptake of H$_2$O$_2$ by ATD particles. The value of γ_0, independent of [H$_2$O$_2$]$_0$ in the range of (0.18–5.1) $\times 10^{12}$ molecule cm$^{-3}$ and irradiation for J(NO$_2$) up to 0.012 s$^{-1}$, was observed to decrease with RH and temperature (El Zein et al., 2014). At 275 K, the dependence of γ_0 on RH (up to 69 %) can be described by the following equation (El Zein et al., 2014):

$$\gamma_0 = 4.8 \times 10^{-4}/(1 + RH^{0.66}).$$

(11)

At 0.35 % RH, the effect of temperature on γ_0 is given by the following equation (El Zein et al., 2014):

$$\gamma_0 = 3.2 \times 10^{-4}/\left[1 + 2.5 \times 10^{10} \times \exp\left(-7360/T\right)\right].$$

(12)

It has also been found that γ_{ss}, independent of RH and T, decreased with [H$_2$O$_2$]$_0$ under dark and irradiated conditions, given by the following equation (El Zein et al., 2014):

$$\gamma_{ss}(dark) = 3.8 \times 10^{-5} \times ([H_2O_2]_0)^{-0.6}.$$

(13)

UV irradiation could enhance heterogeneous reactivity of ATD towards H$_2$O$_2$. For example, when J(NO$_2$) was equal to 0.012 s$^{-1}$, γ_{ss}(dark) and γ_{ss}(UV) were determined to be (0.95 \pm 0.30) $\times 10^{-5}$ and (1.85 \pm 0.55) $\times 10^{-5}$, respectively (El Zein et al., 2014).

Romanias et al. (2013) examined heterogeneous interactions of H$_2$O$_2$ with γ-Al$_2$O$_3$ and Fe$_2$O$_3$, and found that both surfaces were gradually deactivated after exposure to H$_2$O$_2$: γ_0, independent of [H$_2$O$_2$]$_0$ in the range of (0.15–16.6) $\times 10^{12}$ molecule cm$^{-3}$, was found to vary with RH and temperature (Romanias et al., 2013). At 280 K, the dependence of γ_0 on RH (up to 73 %) can be given by

$$\gamma_0(Al_2O_3) = 1.10 \times 10^{-3}/\left(1 + RH^{0.93}\right).$$

(14)

$$\gamma_0(Fe_2O_3) = 1.05 \times 10^{-3}/\left(1 + RH^{0.73}\right).$$

(15)

At 0.3 % RH, the dependence of γ_0 on temperature (T) in the range of 268–320 K can be described by the following equation:

$$\gamma_0(Al_2O_3) = 8.7 \times 10^{-4}/\left[1 + 5.0 \times 10^{13} \times \exp(-9700/T)\right].$$

(16)

$$\gamma_0(Fe_2O_3) = 9.3 \times 10^{-4}/\left[1 + 3.6 \times 10^{14} \times \exp(-10300/T)\right].$$

(17)

In contrast to TiO$_2$ and ATD, no significant effects of UV irradiation with J(NO$_2$) up to 0.012 s$^{-1}$ were observed for γ-Al$_2$O$_3$ and Fe$_2$O$_3$ (Romanias et al., 2013).

3.2.1 Discussion of previous laboratory studies

The dependence of γ_i(H$_2$O$_2$) on RH, measured at room temperature, is plotted in Fig. 8 for different dust particles. Uptake coefficients reported by Zhao et al. (2011b) are several orders of magnitude smaller than those reported by other studies, and therefore they are not included in Fig. 8. For studies using dust particles supported on substrates, γ_0(H$_2$O$_2$) are plotted.

Figure 8 suggests that different minerals show various heterogeneous reactivity towards H$_2$O$_2$, and the effects of RH also appear to be different. Two previous studies have investigated heterogeneous uptake of H$_2$O$_2$ by TiO$_2$ at different...
Figure 8. RH dependence of \(\gamma(\text{H}_2\text{O}_2) \) for mineral dust particles as reported by previous studies (Pradhan et al., 2010a, b; Wang et al., 2011; Romanias et al., 2012a, 2013; El Zein et al., 2014). Solid black curve: ATD (El Zein et al., 2014); dashed blue curve: TiO\(_2\) (Romanias et al., 2012); solid olive curve: Fe\(_2\)O\(_3\) (Romanias et al., 2013); dashed red curve: Al\(_2\)O\(_3\) (Romanias et al., 2013).

RH under dark conditions, one using an aerosol flow tube (Pradhan et al., 2010a) and the other using a coated rod flow tube (Romanias et al., 2012a). For TiO\(_2\), \(\gamma(\text{H}_2\text{O}_2) \) reported by Romanias et al. (2012a) is around 40–50 \% of those determined by Pradhan et al. (2010a) over 10–75 \% RH. The agreement is quite good considering the fact that two very different techniques were used. Wang et al. (2011) and Romanias (2013) examined heterogeneous reactions of H\(_2\)O\(_2\) with Fe\(_2\)O\(_3\) and Al\(_2\)O\(_3\). Their reported \(\gamma_0(\text{H}_2\text{O}_2) \) values differ significantly, though BET surface area was used by both studies to calculate uptake coefficients. This may be largely explained by the variation of the interrogation depth of H\(_2\)O\(_2\) molecules under investigation in different studies, as discussed in Sect. 2.2.1. Experiments in which aerosol samples are used can largely overcome the difficulty in estimating surface area available for heterogeneous uptake. Up to now only two studies (Pradhan et al., 2010a, b) used aerosol flow tubes, and more aerosol flow tube studies will help better constrain \(\gamma(\text{H}_2\text{O}_2) \) onto mineral dust particles.

The effects of temperature on heterogeneous reactions of H\(_2\)O\(_2\) with mineral dust have also been explored. As shown in Fig. 9, \(\gamma_0(\text{H}_2\text{O}_2) \) decreases with increasing temperature. Zhou et al. (2012, 2016) suggest that \(\gamma_0(\text{H}_2\text{O}_2) \) is reduced by a factor of \(\sim 2 \) for all the five minerals they investigated when temperature increase from 253 to 313 K. Romanias et al. (2013) and El Zein et al. (2014) reported larger temperature impacts, with \(\gamma_0(\text{H}_2\text{O}_2) \) reduced by a factor of \(\sim 4 \) when temperature increases from 268 to 320 K. These studies show that the temperature effect is significant and should be taken into account when assessing the importance of heterogeneous uptake of H\(_2\)O\(_2\) by mineral dust in the troposphere.

Figure 9. Temperature dependence of \(\gamma_0(\text{H}_2\text{O}_2) \) for mineral dust particles under dark conditions as reported by previous studies. Upward triangles: ATD (Zhou et al., 2016); circles: Inner Mongolia desert dust (Zhou et al., 2016); squares: Xinjiang sierozem (Zhou et al., 2016); downward triangles: CaCO\(_3\) (Zhou et al., 2012); diamonds: SiO\(_2\) (Zhou et al., 2012); dashed olive curve: ATD (El Zein et al., 2014); solid black curve: Al\(_2\)O\(_3\) (Romanias et al., 2013); dashed red curve: Fe\(_2\)O\(_3\) (Romanias et al., 2013).
It should also be pointed out that the effect of temperature on heterogeneous reactions of \(\text{H}_2\text{O}_2 \) with airborne mineral dust particles has never been investigated.

In addition, it has been suggested that uptake of \(\text{H}_2\text{O}_2 \) by mineral dust can affect heterogeneous oxidation of other trace gases (Zhao et al., 2011b, 2013; Huang et al., 2015a). For example, heterogeneous uptake of \(\text{H}_2\text{O}_2 \) could convert sulfate formed by the adsorption of \(\text{SO}_2 \) on \(\text{CaCO}_3 \) particles to sulfate, and this conversion is enhanced by adsorbed water (Zhao et al., 2013). Similarly, Huang et al. (2015a) found that the presence of \(\text{H}_2\text{O}_2 \) could enhance the uptake of \(\text{SO}_2 \) on Asian mineral dust, Tengger desert dust, and ATD, and the enhancement factors, varying with dust mineralogy and RH, can be as large as \(\sim 6 \). Heterogeneous oxidation of methacrolein on kaolinite, \(\alpha\text{-Al}_2\text{O}_3 \), \(\alpha\text{-Fe}_2\text{O}_3 \), and \(\text{TiO}_2 \) (but not on \(\text{CaCO}_3 \)) is largely accelerated by the presence of \(\text{H}_2\text{O}_2 \), which also changes the oxidation products (Zhao et al., 2014).

3.2.2 Atmospheric implication

For reasons we have discussed in Sect. 2.2.1, \(\gamma(\text{H}_2\text{O}_2) \) reported by studies using aerosol samples (Pradhan et al., 2010a, b) are preferred. Since Saharan dust is the most abundant mineral dust in the troposphere, in our work we use \(\gamma(\text{H}_2\text{O}_2) \) reported by Pradhan et al. (2010b) for Saharan dust to assess the atmospheric importance of heterogeneous uptake of \(\text{H}_2\text{O}_2 \). The value of \(\gamma(\text{H}_2\text{O}_2) \) onto Saharan dust depends on RH, increasing from \(6.2 \times 10^{-4} \) at 15% to \(9.4 \times 10^{-4} \) at 70% RH. For simplicity, a \(\gamma(\text{H}_2\text{O}_2) \) value of \(1 \times 10^{-3} \), very close to that at 70%, is used here to calculate \(\tau(\text{H}_2\text{O}_2) \).

Several modeling studies have also discussed and evaluated the contribution of heterogeneous uptake by mineral dust to the removal of \(\text{H}_2\text{O}_2 \) in the troposphere. Pradhan et al. (2010b) determined \(\gamma(\text{H}_2\text{O}_2) \) for Saharan dust as a function of RH experimentally and then included this reaction in a box model based on the Master Chemical Mechanism (MCM). It has been found that heterogeneous uptake by mineral dust could reduce simulated \(\text{H}_2\text{O}_2 \) concentrations by up to \(\sim 40 \% \), and its impacts on total peroxy organic radicals, OH, \(\text{O}_3 \), and \(\text{NO}_x \) are small but nonnegligible (Pradhan et al., 2010b). In another box model study, \(\gamma(\text{H}_2\text{O}_2) \) onto Saharan dust was varied in order to reproduce \(\text{H}_2\text{O}_2 \) concentrations measured in July–August 2002 at Tenerife (de Reus et al., 2005). It is found that using \(\gamma(\text{H}_2\text{O}_2) \) of \(5 \times 10^{-4} \), which agrees very well with that measured by Pradhan et al. (2010b), could reach the best agreement between measured and simulated \(\text{H}_2\text{O}_2 \) concentrations (de Reus et al., 2005).

In addition to the uncertainties in \(\gamma(\text{H}_2\text{O}_2) \) related to the effects of mineralogy, RH, and temperature, products formed in heterogeneous reactions of \(\text{H}_2\text{O}_2 \) with mineral dust are not entirely clear. Three pathways have been proposed, including (i) simple partitioning of \(\text{H}_2\text{O}_2 \) onto dust particles (Zhao et al., 2011b, 2013), (ii) surface decomposition of \(\text{H}_2\text{O}_2 \) to \(\text{H}_2\text{O} \) and \(\text{O}_2 \), and (iii) heterogeneous conversion of \(\text{H}_2\text{O}_2 \) to \(\text{HO}_2 \) radicals (Romanias et al., 2012a; Yi et al., 2012). Branching ratios seem to depend on mineralogy, RH, and probably also UV illumination (Zhao et al., 2011b, 2013; Yi et al., 2012); however, our knowledge in this aspect is very limited. Since these three different pathways may have very different impacts on tropospheric oxidation capacity, product distribution in heterogeneous reactions of \(\text{H}_2\text{O}_2 \) with mineral dust deserves further investigation.

3.3 O\(_3\)

Heterogeneous reactions of \(\text{O}_3 \) with \(\text{Al}_2\text{O}_3 \), \(\text{CaCO}_3 \), Saharan dust were explored using a fluidized bed reactor more than 2 decades ago, and substantial \(\text{O}_3 \) decays were observed after interactions with dust power in the reactor (Alebić-Jurietić et al., 1992). This study did not report uptake coefficients and thus is not included in Table 6. Uptake coefficients in the range of \((1-100) \times 10^{-11} \) were reported for \(\text{Al}_2\text{O}_3 \) (Hanning-Lee et al., 1996). Since their experiments were carried out with \(\text{O}_3 \) concentrations in the range of \((5-200) \times 10^{13} \text{ molecule cm}^{-3} \), which are several orders of magnitude higher than typical \(\text{O}_3 \) levels in the troposphere, this work is also not included in Table 6.

A Knudsen cell reactor was used by Grassian and coworkers (Michel et al., 2002, 2003; Usher et al., 2003b) to study heterogeneous reactions of \(\text{O}_3 \) with fresh and aged mineral dust particles. Measurements were carried out in the linear mass-dependent regime (see Sect. 2.2.1 for more explanations of the linear mass-dependent regime), and thus the BET surface areas of dust samples were used to calculate uptake coefficients. In the first study (Michel et al., 2002), \(\gamma(\text{O}_3) \) was determined to be \((1.8 \pm 0.7) \times 10^{-4} \) for \(\alpha\text{-Fe}_2\text{O}_3 \), \((8 \pm 5) \times 10^{-5} \) for \(\alpha\text{-Al}_2\text{O}_3 \), \((5 \pm 3) \times 10^{-5} \) for \(\text{SiO}_2 \), \((2.7 \pm 0.9) \times 10^{-5} \) for China loess, \((6 \pm 3) \times 10^{-5} \) for ground Saharan dust, and \((4 \pm 2) \times 10^{-6} \) for sieved Saharan dust at 296 K when \([\text{O}_3]_0 \) was \(1.9 \times 10^{11} \text{ molecule cm}^{-3} \). In a following study, Michel et al. (2003) systematically investigated heterogeneous reactions of \(\text{O}_3 \) with several mineral dust particles, and progressive surface deactivation was observed for all the dust samples. At \(295 \pm 1 \text{ K} \) and \([\text{O}_3]_0 \) of \((1.9 \pm 0.6) \times 10^{11} \text{ molecule cm}^{-3} \), \(\gamma(\text{O}_3) \) were reported to be \((2.0 \pm 0.3) \times 10^{-4} \) for \(\alpha\text{-Fe}_2\text{O}_3 \), \((1.2 \pm 0.4) \times 10^{-5} \) for \(25 \mu\text{m} \alpha\text{-Al}_2\text{O}_3 \), \((6.3 \pm 0.9) \times 10^{-5} \) for \(\text{SiO}_2 \), \((3 \pm 1) \times 10^{-5} \) for kaolinite, \((2.7 \pm 0.8) \times 10^{-5} \) for China loess, \((6 \pm 2) \times 10^{-5} \) for ground Saharan dust, and \((2.7 \pm 0.9) \times 10^{-6} \) for ground Saharan dust, respectively; \(\gamma(\text{O}_3) \) was also measured for \(1 \mu\text{m} \)
α-Al₂O₃, and with the experimental uncertainties it shows no difference with that for 25 μm α-Al₂O₃. The steady-state uptake coefficients, \(\gamma_{\text{O}_3} \), were determined to be 2.2 × 10⁻⁵ for α-Fe₂O₃, 7.6 × 10⁻⁶ for α-Al₂O₃, and 6 × 10⁻⁶ for ground Saharan dust. The effect of initial O₃ concentration in the range of (1–10) × 10¹¹ molecule cm⁻³ on \(\gamma_{\text{O}_3} \) is insignificant for either α-Al₂O₃ or α-Fe₂O₃. In addition, \(\gamma_{\text{O}_3} \) was found to have a very weak dependence on temperature (250–330 K) for α-Al₂O₃, with an activation energy of 7 ± 4 kJ mol⁻¹ (Michel et al., 2003).

Heterogeneous processing of mineral dust particles by other trace gases could affect O₃ uptake. It has been observed that \(\gamma_{\text{O}_3} \) was reduced by ~70 % after pretreatment of α-Al₂O₃ with HNO₃ and increased by 33 % after pretreatment with SO₂ (Usher et al., 2003b). Similarly, functionalization of SiO₂ with a C₈ alkene would increase its heterogeneous reactivity towards O₃ by 40 %, whereas its heterogeneous reactivity was reduced by about 40 % if functionalized by a C₈ alkane (Usher et al., 2003b). The presence of O₃ can also promote heterogeneous oxidation of other trace gases on mineral dust surface (Ullerstam et al., 2002; Hanisch and Crowley, 2003b; Li et al., 2006; Chen et al., 2008; Wu et al., 2011), including NO, SO₂, methacrolein, methyl vinyl ketone, etc.

Another two groups also utilized Knudsen cell reactors to investigate O₃ uptake by mineral dust (Hanisch and Crowley, 2003a; Karagulian and Rossi, 2006). The uptake of O₃ by Saharan dust was investigated over a broad range of [O₃]₀ by Hanisch and Crowley (2003a), and \(\gamma_{\text{O}_3} \) and \(\gamma_{\text{O}_3} \) were determined to be 3.5 × 10⁻⁴ and 4.8 × 10⁻⁵ when [O₃]₀ was (5.4 ± 0.8) × 10¹⁰ molecule cm⁻³, 5.8 × 10⁻⁵ and 1.3 × 10⁻⁵ when [O₃]₀ was 2.8 × 10¹¹ molecule cm⁻³, and 5.5 × 10⁻⁶ and 2.2 × 10⁻⁷ when [O₃]₀ was (8.4 ± 3.4) × 10¹² molecule cm⁻³, showing a negative dependence on [O₃]₀. It should be noted that the KML model (Keyser et al., 1991, 1993) was applied by Hanisch and Crowley (2003a) to derive the uptake coefficients. Furthermore, they found that O₃ was converted to O₂ after reaction with Saharan dust and physisorption was negligible (Hanisch and Crowley, 2003a).

Karagulian and Rossi et al. (2006) investigated heterogeneous interactions of O₃ with kaolinite, CaCO₃, natural limestone, Saharan dust, and ATD. Based on the projected surface areas of dust samples, their reported \(\gamma_{\text{O}_3} \) is in the range of (2.3 ± 0.4) × 10⁻² to (9.3 ± 2.6) × 10⁻², and \(\gamma_{\text{O}_3} \) is in the range of (3.5 ± 1.6) × 10⁻³ to (1.0 ± 0.2) × 10⁻². These values, summarized in Table 6 together with corresponding [O₃]₀, are not repeated here. Pore-diffusion-corrected \(\gamma_{\text{O}_3} \) was reported to be (2.7 ± 0.3) × 10⁻⁵ for kaolinite when [O₃]₀ was 2.4 × 10¹² molecule cm⁻³ and (7.8 ± 0.7) × 10⁻⁷ for CaCO₃ when [O₃]₀ was 5.3 × 10¹² molecule cm⁻³, more than 3 orders of magnitude smaller than those based on the projected surface area (Karagulian and Rossi, 2006).

The uptake of O₃ on α-Al₂O₃ (Sullivan et al., 2004) and Saharan dust (Chang et al., 2005) was investigated using a static reactor, in which a dust-coated Pyrex tube was exposed to O₃ at room temperature. In the first few tens of seconds after exposure to dust particles, O₃ decays followed an exponential manner, and the average decay rates were used to derive uptake coefficients. The value of \(\gamma(\text{O}_3) \), based on the BET surface area, was found to decrease with increasing initial [O₃]. For α-Al₂O₃, \(\gamma(\text{O}_3) \) decreased from ~1 × 10⁻⁵ to ~1 × 10⁻⁶ when [O₃] increased from 1 × 10¹³ to 1 × 10¹⁴ molecule cm⁻³ (Sullivan et al., 2004). For Saharan dust, \(\gamma(\text{O}_3) \) decreased from 2 × 10⁻⁷ to 2 × 10⁻⁶ when [O₃] increased from 2 × 10¹² to 1 × 10¹⁴ molecule cm⁻³, and the dependence of \(\gamma(\text{O}_3) \) on [O₃] can be described by Eq. (18) (Chang et al., 2005):

\[
\gamma(\text{O}_3) = 7.5 \times 10^5 \times [\text{O}_3]^{-0.90},
\]

where [O₃] is the O₃ concentration in molecules per cubic centimeter (molecule cm⁻³). No significant effect of RH (0–75 %) on uptake kinetics was observed for α-Al₂O₃ and Saharan dust (Sullivan et al., 2004; Chang et al., 2005).

An environmental chamber in which O₃ was exposed to suspended particles was deployed to investigate heterogeneous reactions of airborne mineral dust with O₃ under dark and illuminated conditions (Mogili et al., 2006a; Chen et al., 2011a, b). O₃ concentrations in the chamber, detected using FTIR or UV–Visible absorption spectroscopy, were found to decay exponentially with reaction time. As shown in Fig. 10, uptake of O₃ by α-Fe₂O₃ was significantly suppressed at increasing RH, and a negative effect of RH was also observed for uptake of O₃ by α-Al₂O₃ (Mogili et al., 2006a). In addition, increasing [O₃] resulted in a reduction in \(\gamma(\text{O}_3) \) for both minerals. Heterogeneous reactivity towards O₃ under similar conditions is higher for α-Fe₂O₃ when compared to α-Al₂O₃ (Mogili et al., 2006a). For α-Fe₂O₃, when [O₃]₀ was 7.9 × 10¹⁴ molecule cm⁻³, \(\gamma(\text{O}_3) \) decreased from (1.0 ± 0.3) × 10⁻⁷ at <1 % RH to (1.2 ± 0.3) × 10⁻⁸ at 23 % RH and to (2.5 ± 0.6) × 10⁻⁹ at 58 % RH; when [O₃]₀ was 2.1 × 10¹⁴ molecule cm⁻³, \(\gamma(\text{O}_3) \) was reduced from (5.0 ± 1.2) × 10⁻⁸ at <1 % RH to (2.0 ± 0.5) × 10⁻⁸ at 21 % RH and to (9.0 ± 2.3) × 10⁻⁹ at 43 % RH. Meanwhile, \(\gamma(\text{O}_3) \) was observed to decrease from (3.5 ± 0.9) × 10⁻⁸ at <1 % RH to (4.5 ± 1.1) × 10⁻⁹ at 19 % RH for α-Al₂O₃ when [O₃]₀ was 1 × 10¹⁵ molecule cm⁻³.

A solar simulator was coupled to the environmental chamber by Chen et al. (2011a), and irradiation from the solar simulator was found to enhance heterogeneous uptake of O₃ by α-Fe₂O₃ and α-Al₂O₃; however, no uptake coefficient was reported. In a following study, Chen et al. (2011b) found that heterogeneous uptake of O₃ by α-Al₂O₃ was insignificant under both dark and irradiated conditions. In contrast, while the uptake of O₃ by TiO₂ was negligible under dark conditions, when irradiated \(\gamma(\text{O}_3) \) was determined to be (2.0 ± 0.1) × 10⁻⁷ at <2 % RH, (2.2 ± 0.1) × 10⁻⁷ at 12 % RH, (2.4 ± 0.1) × 10⁻⁷ at 22 % RH, and (1.9 ± 0.1) × 10⁻⁷ at 39 % RH (Chen et al., 2011b). Photoenhanced O₃ uptake was also observed for α-Fe₂O₃ (Chen et al., 2011b). Under dark conditions \(\gamma(\text{O}_3) \) decreased from (4.1 ± 0.2) × 10⁻⁷...
Table 6. Summary of previous laboratory studies on heterogeneous reactions of mineral dust with O_3. RT: room temperature.

<table>
<thead>
<tr>
<th>Dust</th>
<th>Reference</th>
<th>T (K)</th>
<th>Concentration (molecule cm$^{-3}$)</th>
<th>Uptake coefficient</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al_2O_3</td>
<td>Michel et al. (2002)</td>
<td>296</td>
<td>1.9×10^{11}</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Michel et al. (2003)</td>
<td>250-330</td>
<td>$(1.0-1.0) \times 10^{11}$</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Usher et al. (2003b)</td>
<td>295±1</td>
<td>1.9×10^{11}</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Michel et al. (2003)</td>
<td>295±1</td>
<td>$(1.0-1.0) \times 10^{11}$</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Mogili et al. (2006a)</td>
<td>RT</td>
<td>$(1.0-1.0) \times 10^{11}$</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>static reactor</td>
</tr>
<tr>
<td></td>
<td>Mogili et al. (2006a)</td>
<td>RT</td>
<td>1.0×10^{15}</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$ at 1% RH</td>
<td>EC</td>
</tr>
<tr>
<td>Sahara dust</td>
<td>Michel et al. (2002)</td>
<td>296</td>
<td>1.9×10^{11}</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Hanisch and Crowley (2003a)</td>
<td>296</td>
<td>$(0.54-0.84) \times 10^{11}$</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Michel et al. (2003)</td>
<td>295±1</td>
<td>$(1.9 \pm 0.6) \times 10^{11}$</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Chang et al. (2005)</td>
<td>RT</td>
<td>$(0.2-1.0) \times 10^{11}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>static reactor</td>
</tr>
<tr>
<td></td>
<td>Karagulian and Rossi (2006)</td>
<td>298±2</td>
<td>$(3.5-1.0) \times 10^{12}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>Michel et al. (2002)</td>
<td>296</td>
<td>1.9×10^{11}</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Michel et al. (2003)</td>
<td>295±1</td>
<td>$(1.0-1.0) \times 10^{11}$</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Mogili et al. (2006a)</td>
<td>RT</td>
<td>$(1.8-8.5) \times 10^{14}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Michel et al. (2002)</td>
<td>296</td>
<td>1.9×10^{11}</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Michel et al. (2003)</td>
<td>295±1</td>
<td>$(1.9 \pm 0.6) \times 10^{11}$</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Usher et al. (2003b)</td>
<td>295±1</td>
<td>1.9×10^{11}</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Nicolas et al. (2009)</td>
<td>298</td>
<td>$(1.3-7.3) \times 10^{12}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td>China loess</td>
<td>Michel et al. (2002)</td>
<td>296</td>
<td>1.9×10^{11}</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>CWFT</td>
</tr>
<tr>
<td></td>
<td>Michel et al. (2003)</td>
<td>295±1</td>
<td>$(1.9 \pm 0.6) \times 10^{11}$</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>CWFT</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>Michel et al. (2003)</td>
<td>295±1</td>
<td>$(1.9 \pm 0.6) \times 10^{11}$</td>
<td>$\gamma_H = (8.1 \pm 0.7) \times 10^{-4}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Karagulian and Rossi (2006)</td>
<td>298±2</td>
<td>$(2.4-0.7) \times 10^{12}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>Karagulian and Rossi (2006)</td>
<td>298±2</td>
<td>$(5.3 \pm 0.7) \times 10^{12}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>Nicolas et al. (2009)</td>
<td>298</td>
<td>$(1.3-7.3) \times 10^{12}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Chen et al. (2011b)</td>
<td>RT</td>
<td>$(2.3-3.0) \times 10^{15}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td>ATD</td>
<td>Karagulian and Rossi (2006)</td>
<td>298±2</td>
<td>$(3.3-8.0) \times 10^{12}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>KC-MS</td>
</tr>
<tr>
<td>Limestone</td>
<td>Karagulian and Rossi (2006)</td>
<td>298±2</td>
<td>$(3.2-20) \times 10^{12}$</td>
<td>$\gamma_{O_3} = (3.5 \pm 0.9) \times 10^{-8}$</td>
<td>KC-MS</td>
</tr>
</tbody>
</table>
at $< 2\%$ RH to $(2.7 \pm 0.1) \times 10^{-7}$ at 21% RH, while irradiated $\chi(O_3)$ was reported to be $(6.6 \pm 0.3) \times 10^{-7}$ at $< 2\%$ RH, $(5.5 \pm 0.3) \times 10^{-7}$ at 12% RH, and $(1.1 \pm 0.1) \times 10^{-7}$ at 25% RH.

Photoenhanced catalytic decomposition of O_3 on mineral dust was in fact first reported by a coated wall flow tube study at 298 K (Nicolas et al., 2009). Under their experimental conditions ($[O_3]_0$ = 50–290 ppbv; RH: 3–60%), the BET-surface-area-based $\chi_{ss}(O_3)$ was found to be $< 1 \times 10^{-8}$ for SiO$_2$ and TiO$_2$/SiO$_2$ mixture with TiO$_2$ mass fraction up to 5% under dark conditions. Near-UV irradiation could largely increase the uptake of O_3 by TiO$_2$/SiO$_2$ mixture, and the effect increased with the TiO$_2$ mass fraction (the effect is insignificant for pure SiO$_2$) and almost depended linearly on the intensity of UV irradiance (Nicolas et al., 2009). When RH was 24% and $[O_3]_0$ was 51 ppbv, $\chi(O_3)$ for TiO$_2$/SiO$_2$ mixture with a TiO$_2$ mass fraction of 1% was measured to be $(2.8 \pm 0.4) \times 10^{-9}$ under dark conditions and $(4.7 \pm 0.7) \times 10^{-8}$ under near-UV irradiation of 3.0×10^{-8} mW cm$^{-2}$. RH was found to play a profound role in heterogeneous photochemical reaction of O_3 with TiO$_2$/SiO$_2$. Figure 11 shows that the irradiance-normalized uptake coefficient, defined as the uptake coefficient divided by the irradiance intensity, increased with RH for RH $< 20\%$ and then decreased significantly with RH when RH was further increased. This phenomenon was also observed by Chen et al. (2011b), who found that under illuminated conditions $\chi(O_3)$ first increased and then decreased with RH for TiO$_2$ aerosol particles.

Heterogeneous uptake of O_3 may lead to oxidation of organic materials coated on mineral dust particles. Gligorovski and coworkers extensively investigated heterogeneous ozonation of aromatic compounds adsorbed on silica particles used as a proxy of mineral dust particles in the atmosphere (Net et al., 2009, 2010a–d, 2011). For example, compared to dark conditions, loss of veratraldehyde coated on silica particles due to heterogeneous ozonolysis was increased under exposure to light (Net et al., 2010b). Heterogeneous reactivity of 4-phenoxophenol towards ozone was significantly enhanced in the presence of aromatic ketones (4-carboxybenzophenone) under light irradiation compared to the dark ozone reaction (Net et al., 2010d). This photosensitized reaction proceeds through the electron transfer reaction to ozone with formation of an ozonide anion (O_3^-) which can further react to produce OH radicals (De Laurentiis et al., 2013), and the formation of OH radicals was confirmed during such photochemical processing on the silica particles. The same group (Net et al., 2009) proposed a comprehensive reaction mechanism based on identified products arising from the OH-addition to 4-phenoxophenol. The phenoxyl radicals were proposed as a key intermediate which may react with OH radicals, producing hydroquinone, catechol, or other polyhydroxylated benzenes. The phenoxyl radicals are also responsible for the formation of oligomers by adding to another 4-phenoxophenol molecule. Heterogeneous ozonolysis of phenols and methoxyphenols adsorbed on the mineral oxide surface is substantially impacted by sunlight irradiation. These photosensitized processes may play important roles in many issues, such as adverse health effects of inhaled particles and formation of secondary organic aerosols.

3.3.1 Discussion

All the initial $\gamma(O_3)$ values reported by previous studies for different minerals are summarized in Fig. 12 as a function of
[O$_3$]. Karagulian and Rossi (2006) reported projected-area-based γ_0(O$_3$), which are several orders of magnitude larger than values reported by other work. This is because O$_3$ uptake by mineral dust is relatively slow and some underlying dust layers, if not all, must be accessible by O$_3$ molecules. Therefore, results reported by Karagulian and Rossi (2006) are not included in Fig. 12. Sullivan et al. (2004) and Chang et al. (2005) measured O$_3$ decay rates in the first tens of seconds due to interaction with dust particles deposited onto the inner wall of a Pyrex tube to derive γ(O$_3$). Their reported γ(O$_3$) are in fact the average uptake coefficients in the first tens of seconds, and can be classified as either γ_0(O$_3$) and γ_{ss} (O$_3$). Therefore, γ(O$_3$) values reported by Sullivan et al. (2004) and Chang et al. (2005) are included in Fig. 12, which summarizes γ_0(O$_3$), and also in Fig. 13, which summarizes γ_{ss}(O$_3$).

It should be noted that all the studies included in Fig. 12 used dust powder samples supported on substrates. Significant variation in reported γ_0(O$_3$) is evident from Fig. 12. For example, γ_0(O$_3$) values determined at [O$_3$] of $\sim 2 \times 10^{11}$ molecule cm$^{-3}$ differed by a factor of ~ 10. The observed difference in γ_0(O$_3$) may be caused by (1) variability in heterogeneous reactivity of different minerals and (2) different experimental methods leading to different results. For example, it has been suggested that pretreatment of mineral dust particles (e.g., heating, grounding, and evacuation) could modify their initial heterogeneous reactivity towards O$_3$ (Hanisch and Crowley, 2003a; Michel et al., 2003). Furthermore, as discussed in Sect. 2.2, time resolution in different studies is also different, making interpretation of γ_0 difficult.

In contrast, γ_{ss}(O$_3$) values reported by previous studies under dry conditions show fairly good agreement (as displayed in Fig. 13), considering the fact that very different experimental techniques have been used (for example, aerosol samples were used by Mogili et al. (2006b) and Chen et al. (2011b) while all the other studies used dust powder samples supported on substrates). In addition, a rather strong dependence of γ_{ss}(O$_3$) on initial O$_3$ concentration can be observed. Eq. (19) has been recommended by the IUPAC task group on Atmospheric Chemical Kinetic Data Evaluation to parameterize the dependence of γ_{ss}(O$_3$) on [O$_3$] (Crowley et al., 2010a):

$$\gamma(O_3) = 1500 \times [O_3]^{-0.7},$$ \hspace{1cm} (19)
prepared by the IUPAC Task Group. In addition, the work by Chen et al. (2011b) was published after the IUACP report was released online.

Only three previous studies have explored effects of RH on heterogeneous reactions of O₃ with mineral dust, and different results have been reported. While a strong negative effect of RH on O₃ uptake kinetics was observed for α-Al₂O₃ and α-Fe₂O₃ by Mogili et al. (2006b), the other two studies (Sullivan et al., 2004; Chang et al., 2005) suggested that the influence of RH on heterogeneous uptake of O₃ by α-Al₂O₃ and Saharan dust was insignificant. Further experimental and theoretical work is required to better understand the effect of RH on O₃ uptake by mineral dust. As discussed below, surface-adsorbed water may play different roles in heterogeneous reaction of minerals with O₃.

A few other studies (Li et al., 1998; Li and Oyama, 1998; Roscoe and Abbatt, 2005; Lampimaki et al., 2013) used different surface techniques to monitor mineral dust surfaces during exposure to O₃. These studies did not report uptake coefficients and hence are not included in Table 6. Nevertheless, they have provided valuable insights into reaction mechanisms at the molecular level and are worthy of further discussion. A new Raman peak at 884 cm⁻¹ was observed after exposure of MnO₂ to O₃, and it is attributed to peroxide species (i.e., SS-O₂) by combining Raman spectroscopy, ¹⁸O isotope substitution measurements, and ab initio calculation (Li et al., 1998). Consequently, the following reaction mechanism has been proposed for heterogeneous reaction of O₃ with metal oxides (Li et al., 1998):

\[
\begin{align*}
\text{O}_3(g) + \text{SS} &\rightarrow \text{SS-O} + \text{O}_2(g), \quad \text{(R18a)} \\
\text{SS-O} + \text{O}_3(g) &\rightarrow \text{SS-O}_2 + \text{O}_2(g), \quad \text{(R18b)}
\end{align*}
\]

where SS represents reactive surface sites towards O₃. The intensity of the SS-O₂ peak was found to decrease gradually with time after O₃ exposure was terminated, suggesting that SS-O₂ would slowly decompose to O₂ (Li et al., 1998):

\[
\text{SS-O}_2 \rightarrow \text{SS} + \text{O}_2(g). \quad \text{(R17)}
\]

A following study by the same group (Li and Oyama, 1998) suggested that the steady state and transient kinetics of heterogeneous decomposition of O₃ on MnO₂ could be well described by the aforementioned reaction mechanism (Reactions R18a–R18c). Reaction (R18a) is expected to be of the Eley–Rideal type, because desorption of O₃ from mineral surfaces has never been observed (HANisch and Crowley, 2003a; Michel et al., 2003; Karagulian and Rossi, 2006), and thus the Langmuir–Hinshelwood mechanism is unlikely. It is also suggested that Reaction (R18a) is much faster than the other two steps and the reactivation step (Reaction R18c) is slowest (Li et al., 1998; Li and Oyama, 1998).

The reaction mechanism proposed by Li et al. was supported by several following studies. For example, gradual surface passivation was observed for a variety of minerals (HANisch and Crowley, 2003a; Michel et al., 2003), suggesting that the number of reactive surface sites towards O₃ is limited, as implied by Reaction (R18a) and (R18b). On the other hand, two previous studies (HANisch and Crowley, 2003a; Sullivan et al., 2004) observed that surface reactivation would slowly occur after O₃ exposure was stopped, and Michel et al. (2003) found that heterogeneous uptake of O₃ by minerals is of catalytic nature to some extent. These studies (HANisch and Crowley, 2003a; Michel et al., 2003; Sullivan et al., 2004) clearly demonstrate that a slow surface reactivation step exists, consistent with the reaction mechanism (more precisely, Reaction R18c) proposed by Li and coworkers (Li et al., 1998; Li and Oyama, 1998).

Using DRIFTS, Roscoe and Abbatt (2005) monitored the change of alumina during its heterogeneous interaction with O₃ and water vapor. A new IR peak at 1380 cm⁻¹, attributed to SS-O, appeared after alumina was exposed to O₃. Because alumina is opaque below 1100 cm⁻¹, the SS-O₂ peak, expected to appear at around 884 cm⁻¹ (Li et al., 1998), could not be detected by IR. When alumina was simultaneously exposed O₃ and water vapor, the intensity of the SS-O peak was substantially decreased, compared to the case of exposure to O₃ alone. This suggests that water molecules can be adsorbed strongly to sites which would otherwise react with O₃, thus suppressing the formation of SS-O on the surface (Roscoe and Abbatt, 2005). In this aspect, increasing RH will reduce heterogeneous reactivity of alumina towards O₃. It was further found that if O₃-reacted alumina was exposed to water vapor, the intensity of the SS-O IR peak would gradually decrease while the amount of surface-adsorbed water would increase. This indicates that SS-O would react with adsorbed water to regenerate reactive surface sites (i.e., SS as shown in Reaction R18a), implying that the presence of water vapor may also promote O₃ uptake by alumina. As we discussed before, previous studies which examined the effects of RH on heterogeneous reactions of O₃ with minerals (Sullivan et al., 2004; Chang et al., 2005; Mogili et al., 2006a) do not agree with each other. This inconsistence may be (at least partly) caused by complex roles which adsorbed water plays in heterogeneous uptake of O₃ by mineral dust. Further work is required to elucidate the effect of RH, especially considering that the heterogeneous reaction of O₃ with minerals is of interest not only for atmospheric chemistry but also for indoor air quality and industrial application (Dhandapani and Oyama, 1997).

3.3.2 Atmospheric implications

Using the dependence of \(γ(O₃)\) on [O₃] recommended by Crowley et al. (2010a) and assuming a typical O₃ concentration of \(1.5 \times 10^{12}\) molecule cm⁻³ (~60 ppbv) in the troposphere, \(γ(O₃)\) is calculated to be \(4.5 \times 10^{-6}\). Consequently, lifetimes of O₃ with respect to heterogeneous reaction with mineral dust, \(τ_{\text{het}}(O₃)\), are estimated to be about 1280, 128, and 13 days for dust mass concentrations of 10, 100, and

www.atmos-chem-phys.net/17/11727/2017/
1000 μg m⁻³, respectively. As discussed in Sect. 2.1.2, in polluted and forested areas where alkenes are abundant, O₃ lifetimes are around several hours; in these regions, O₃ removal due to direct heterogeneous uptake by mineral dust is unlikely to be significant. On the other hand, O₃ lifetimes in remote free troposphere are in the range of several days to a few weeks; therefore, direct removal of O₃ by heterogeneous reaction with mineral dust could play a minor but nonnegligible role for some regions in the remote free troposphere heavily impacted by mineral dust.

3.4 HCHO

The photocatalytic oxidation of HCHO on the P25 TiO₂ surface was investigated as a function of HCHO concentration and RH (Obee and Brown, 1995). It has been shown that at a given HCHO concentration, oxidation rates of HCHO first increased and then decreased with RH. Noguchi et al. (1998) found that under dark conditions, P25 TiO₂ particles showed higher HCHO adsorption capacity (after normalized to surface area) than activated carbon. Under UV illumination, TiO₂ thin films could convert HCHO completely to CO₂ and H₂O, with formic acid (HCOOH) being an intermediate product; furthermore, the dependence of photodegradation rates on [HCHO]₀ could be described by the Langmuir–Hinshelwood model (Noguchi et al., 1998). In another study (Liu et al., 2005), it has also been shown that kinetics of photocatalytic oxidation of HCHO on the TiO₂ surface could be described by the Langmuir–Hinshelwood model, and CO was identified as one of the products.

Ao et al. (2004) explored the effects of NO, SO₂, and VOCs (including benzene, toluene, ethylbenzene, and o-xylene) on the photodegradation of HCHO on P25 TiO₂ particles. Formic acid was identified as a major reaction intermediate, and HCHO degradation rates and HCOOH yields both decreased with increasing RH (Ao et al., 2004). In addition, NO could accelerate HCHO oxidation rates and increase HCOOH yields, whereas the copresence of SO₂ and VOCs used in this study was found to inhibit photooxidation of HCHO (Ao et al., 2004). DRIFTS was used by Sun et al. (2010) to investigate adsorption and photooxidation of HCHO on TiO₂. It has been shown that adsorbed HCHO molecules can be rapidly converted to formate on the surface under UV irradiation, and the presence of water vapor could significantly accelerate oxidation of HCHO on TiO₂ (Sun et al., 2010).

All the aforementioned studies (Obee and Brown, 1995; Noguchi et al., 1998; Ao et al., 2004; Liu et al., 2005; Sun et al., 2010) clearly showed that UV illumination could largely enhance heterogeneous uptake of HCHO by TiO₂ particles, and HCOOH/HCOO⁻, CO₂, CO, and H₂O were identified as reaction intermediates and/or products. Though these studies provide useful insights into mechanisms of heterogeneous reactions of HCHO with TiO₂ surface, they are not listed in Table 7 because no uptake coefficients have been reported. The heterogeneous reaction of HCHO (10–40 ppbv) with soil samples was investigated using a coated wall flow tube (Li et al., 2016). At 0 % RH, the initial uptake coefficient was determined to be (1.1 ± 0.05) × 10⁻⁴, gradually decreasing to (5.5 ± 0.4) × 10⁻⁵ within 8 h. Increasing RH would suppress the uptake of HCHO, and around two-thirds of HCHO molecules uptaken by the soil were reversible (Li et al., 2016). The soil samples used by Li et al. were collected from a cultivated field site (Mainz, Germany) and may not resemble the composition and mineralogy of mineral dust aerosol; therefore, this study is not included in Table 7.

Carlos-Cuellar et al. (2003) first determined uptake coefficients of HCHO on several mineral dust particles at room temperature, using a Knudsen cell reactor. Gradual surface deactivation was observed for all three types of particles, and initial uptake coefficients (γ₀), based on the BET surface area, were reported to be (1.1 ± 0.5) × 10⁻⁴ for α-Fe₂O₃, (7.7 ± 0.3) × 10⁻⁵ for α-Al₂O₃, and (2.6 ± 0.9) × 10⁻⁷ for SiO₂ (Carlos-Cuellar et al., 2003).

Using DRIFTS and ion chromatography, Xu and coworkers systematically investigated heterogeneous reactions of HCHO with α-Al₂O₃ (Xu et al., 2006), γ-Al₂O₃ (Xu et al., 2011), and TiO₂ particles (Xu et al., 2010) as a function of temperature, UV irradiation, and HCHO concentration. It has been found that HCHO was first converted to dioxyxymethylene which was then oxidized to formate on the surface, and UV irradiation and increasing temperature both could enhance heterogeneous reactivity of all three types of particles towards HCHO (Xu et al., 2006, 2010, 2011). The value of γ₀ (HCHO) on α-Al₂O₃ at 293 K was determined to be (9.4 ± 1.7) × 10⁻⁹ based on the BET surface area of the sample and (2.3 ± 0.5) × 10⁻⁵ based on the geometrical area of the sample holder (Xu et al., 2006). At room temperature (295 ± 2 K) and under dark conditions, γ₀(HCHO), based on the BET surface area, was determined to be in the range of 0.5 × 10⁻⁸ to 5 × 10⁻⁸ for TiO₂ (Xu et al., 2010), increasing linearly with HCHO concentration (1 × 10¹³ to 2 × 10¹⁴ molecule cm⁻³⁻¹). Under the same conditions, γ₀ (HCHO) was determined to be (3.6 ± 0.8) × 10⁻⁴ based on the geometrical area and (1.4 ± 0.31) × 10⁻⁸ based on the BET surface area for γ-Al₂O₃ (Xu et al., 2011). The effect of RH was further studied for γ-Al₂O₃ at 295 ± 2 K, and the dependence of BET-surface-area-based γ₀(HCHO) on RH is given by the following equation (Xu et al., 2011):

\[
\ln[γ₀(BET)] = -17.5 - 0.0127 \times RH, \tag{20}
\]

where RH is in the unit of percentage (%).

A coated wall flow tube was deployed to investigate heterogeneous reactions of HCHO with TiO₂ and SiO₂ particles, and the effects of UV irradiation, temperature (278–303 K), RH (6–70 %), and HCHO concentration (3.5–32.5 ppbv) were systematically examined (Sassine et al., 2010). Under dark conditions, the uptake of HCHO onto SiO₂ and TiO₂ was very slow, with BET-surface-area-based
\[\gamma_{ss} \approx (3.00 \pm 0.45) \times 10^{-9}.\] Nevertheless, its uptake on TiO\textsubscript{2} and TiO\textsubscript{2} / SiO\textsubscript{2} mixture was largely enhanced by near-UV irradiation (340–420 nm) (Sassine et al., 2010). For pure TiO\textsubscript{2} under the condition of 293 K, 30% RH, and 2 ppbv HCHO, \(\gamma_{ss}\) depended linearly on irradiation intensity (1.9 \times 10^{15} \text{ to } 2.7 \times 10^{15} \text{ photons cm}^{-2} \text{ s}^{-1}).\) The uptake kinetics can be described by the Langmuir–Hinshelwood model: under the condition of 293 K, 6% RH, and 2.7 \times 10^{15} \text{ photons cm}^{-2} \text{ s}^{-1}, \(\gamma_{ss}\) decreased from (6.0 \pm 0.9) \times 10^{-7} to (2.0 \pm 0.3) \times 10^{-7} for TiO\textsubscript{2} when [HCHO] increased from 3.5 to 32.5 ppbv (Sassine et al., 2010).

In addition, the effects of RH and temperature were also explored. As shown in Fig. 14, \(\gamma_{ss}\) was found to first increase with RH for TiO\textsubscript{2} and TiO\textsubscript{2} / SiO\textsubscript{2} mixture as well, reaching a maximum at \(\approx 30 \%\), and then decrease with RH. Under conditions of 30% RH, 11 ppbv HCHO, and 2.7 \times 10^{15} \text{ photons cm}^{-2} \text{ s}^{-1}, \(\gamma_{ss}\) increased from (1.8 \pm 0.3) \times 10^{-7} to 298 K to (3.2 \pm 0.5) \times 10^{-7} at 303 K (Sassine et al., 2010).

3.4.1 Discussion and atmospheric implication

Two previous studies determined BET-surface-area-based \(\gamma_{0}(\text{HCHO})\) for \(\alpha\)-Al\textsubscript{2}O\textsubscript{3} particles under dry conditions at room temperature, and \(\gamma_{0}(\text{HCHO})\) reported by Carlos-Cuellar et al. (2003) is \(> 3\) orders of magnitude larger than that reported by Xu et al. (2006). It is not very clear yet why such a large difference was found between these two studies. Two studies (Sassine et al., 2010; Xu et al., 2010) measured \(\gamma(\text{HCHO})\) for TiO\textsubscript{2} particles; however, it is difficult to make comparisons because one study reported \(\gamma_{0}\) (Xu et al., 2010) and the other one reported \(\gamma_{ss}\) (Sassine et al., 2010).

What we can conclude from previous studies as summarized in Table 7 is that our understanding of atmospheric heterogeneous reaction of HCHO with mineral dust is very limited. For example, all the previous studies only examined its reactions with oxides, while clay minerals and authentic dust samples have never been investigated. Second, as discussed above, large discrepancies are found for uptake coefficients reported by previous studies. Furthermore, roles of RH in heterogeneous uptake of HCHO by mineral dust are not fully

<table>
<thead>
<tr>
<th>Dust</th>
<th>Reference</th>
<th>(T) (K)</th>
<th>Concentration (molecule cm(^{-3}))</th>
<th>Uptake coefficient</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO\textsubscript{2}</td>
<td>Xu et al. (2010)</td>
<td>163–673</td>
<td>((1–20) \times 10^{13})</td>
<td>(\gamma_{0}) (based on the BET surface area) was determined to be in the range of (0.5 \times 10^{-8}) to (5 \times 10^{6}), increasing linearly with HCHO concentration ((1 \times 10^{13} \text{ to } 2 \times 10^{14} \text{ molecule cm}^{-3}).) UV irradiation and increasing temperature could both accelerate this reaction.</td>
<td>DRIFTS, IC</td>
</tr>
<tr>
<td></td>
<td>Sassine et al. (2010)</td>
<td>278–303</td>
<td>((9–82) \times 10^{10})</td>
<td>(\gamma_{ss}) was determined to range from ((3.00 \pm 0.45) \times 10^{-9}) to ((2.26 \pm 0.34) \times 10^{-6}), depending on UV irradiation, HCHO concentration, RH, and temperature.</td>
<td>CWFT</td>
</tr>
<tr>
<td>Al\textsubscript{2}O\textsubscript{3}</td>
<td>Carlos-Cuellar et al. (2003)</td>
<td>295</td>
<td>(1.9 \times 10^{11})</td>
<td>(\gamma_{0}: (7.7 \pm 0.3) \times 10^{-5}) (Sassine et al., 2010).</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Xu et al. (2006)</td>
<td>273–333</td>
<td>((1–10) \times 10^{13})</td>
<td>(\gamma_{0}: (9.4 \pm 1.7) \times 10^{-5}) based on the BET surface area and ((2.3 \pm 0.5) \times 10^{-3}) based on the geometrical area for (\alpha)-Al\textsubscript{2}O\textsubscript{3}. UV irradiation and increasing temperature could both accelerate this reaction.</td>
<td>DRIFTS, IC</td>
</tr>
<tr>
<td></td>
<td>Xu et al. (2011)</td>
<td>84–573</td>
<td>((1.3–3.6) \times 10^{13})</td>
<td>(\gamma_{0}: (3.6 \pm 0.8) \times 10^{-4}) based on the geometrical area and ((1.4 \pm 0.31) \times 10^{-8}) based on the BET surface area for (\gamma)-Al\textsubscript{2}O\textsubscript{3}. UV irradiation and increasing temperature could both accelerate this reaction.</td>
<td>DRIFTS, IC</td>
</tr>
<tr>
<td>SiO\textsubscript{2}</td>
<td>Carlos-Cuellar et al. (2003)</td>
<td>295</td>
<td>(1.9 \times 10^{11})</td>
<td>(\gamma_{0}: (2.6 \pm 0.9) \times 10^{-7}).</td>
<td>KC-MS</td>
</tr>
<tr>
<td></td>
<td>Sassine et al. (2010)</td>
<td>278–303</td>
<td>((9–82) \times 10^{10})</td>
<td>(\gamma_{ss}) under dark conditions: (\approx 3 \times 10^{-9}).</td>
<td>CWFT</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3}</td>
<td>Carlos-Cuellar et al. (2003)</td>
<td>295</td>
<td>(1.9 \times 10^{11})</td>
<td>(\gamma_{0}: (1.1 \pm 0.5) \times 10^{-5}).</td>
<td>KC-MS</td>
</tr>
</tbody>
</table>
understood. Last but not least, though several studies have observed that UV illumination could largely enhance heterogeneous reaction of HCHO with mineral particles, it is non-trivial to know that compared to dark conditions, to which extent this reaction is accelerated under irradiation conditions relevant to the troposphere. Therefore, it is difficult to assess the significance of heterogeneous uptake by mineral dust aerosol particles as a sink for HCHO in a reliable manner.

An uptake coefficient of $(9.7 \pm 1.4) \times 10^{-6}$ was used by Sassine et al. (2010) to evaluate the significance of heterogeneous reactions of HCHO with pure TiO$_2$ particles as a sink for HCHO. This value was linearly extrapolated from their experimental measurements (2 ppbv HCHO, 293 K, and 30% RH) to realistic solar conditions in the troposphere $(1.21 \times 10^{16}$ photons cm$^{-2}$ s$^{-1}$). The value used by Sassine et al. (2010) is also adopted here to preliminarily assess the impact of heterogeneous reactions of HCHO with mineral dust. For simplicity, in our work γ(HCHO) is set to 1×10^{-5} which is only 3% larger than that used by Sassine et al. (2010). Consequently, τ_{het}(HCHO) is calculated to be about 456, 46, and 4.6 days for mineral dust mass concentrations of 10, 100, and 1000 µg m$^{-3}$, respectively. For comparison, as we have discussed in Sect. 2.1, typical lifetimes of HCHO are a few hours in the troposphere, with photolysis and reaction with OH radicals being the two major removal processes. It is quite clear that τ_{het}(HCHO) is much larger than typical lifetimes of HCHO, and thus heterogeneous reaction with mineral dust is unlikely to be significant for the removal of HCHO in the troposphere.

3.5 HONO

Bedjanian and coworkers utilized a coated rod flow tube coupled to a mass spectrometer to investigate heterogeneous reaction of HONO with TiO$_2$, γ-Al$_2$O$_3$, Fe$_2$O$_3$, and ATD particles under dark and illuminated conditions (El Zein and Bedjanian, 2012; Romanias et al., 2012b; El Zein et al., 2013, b). All these measurements were carried out with dust mass in the linear mass-dependent regime, and thus BET surface area was used to calculate uptake coefficients. We note that several previous studies have explored heterogeneous interactions between HONO and Pyrex (Kaiser and Wu, 1977; Ten Brink and Spoelstra, 1998), borosilicate glass (Syomin and Finlayson-Pitts, 2003), and TiO$_2$-doped commercial paints (Laufs et al., 2010). However, these studies are not further discussed here because they are not of direct atmospheric relevance. Uptake of HONO by soil samples was investigated using a coated-wall flow tube (Donaldson et al., 2014), and uptake coefficients were found to decrease with RH, from $(2.5 \pm 0.4) \times 10^{-4}$ at 0% RH to $(1.1 \pm 0.4) \times 10^{-5}$ at 80% RH. Soil used by Donaldson et al. were collected from an agricultural field in Indiana and its mineralogical composition may be quite different from mineral dust aerosol; as a result, this study is not included in Table 8.

El Zein and Bedjanian (2012) measured heterogeneous uptake of HONO by TiO$_2$ particles under dark conditions. Upon exposure to HONO, heterogeneous reactivity of TiO$_2$ was progressively reduced, and the steady-state uptake coefficients were at least 1 order of magnitude smaller than the corresponding initial uptake coefficients, γ_0 (El Zein and Bedjanian, 2012). Independent of initial HONO concentrations in the range of $(0.3-3.3) \times 10^{12}$ molecule cm$^{-3}$, γ_0 showed strong dependence on RH and a slightly negative dependence on temperature. The effects of temperature $(275-320 K)$ at 0.001% RH and of RH at 300 K on γ_0 are given by the following equation (El Zein and Bedjanian, 2012):

\[
\gamma_0 = (1.4 \pm 0.5) \times 10^{-5} \exp[(1405 \pm 110)/T], \quad (21)
\]

\[
\gamma_0 = 1.8 \times 10^{-5} \times RH^{-0.63}. \quad (22)
\]

HONO uptake by TiO$_2$ undergoes chemical conversion on the surface, and molecularly adsorbed HONO is insignificant (El Zein and Bedjanian, 2012). This was confirmed by gas-phase production analysis, showing that the total yield of NO and NO$_2$ is equal to 1 within the experimental uncertainties. The yields of NO and NO$_2$ were determined to be 0.42 ± 0.07 and 0.60 ± 0.09, respectively, independent of RH, temperature, and the initial HONO concentration (El Zein and Bedjanian, 2012).

In a following study, El Zein et al. (2013a) examined the effect of illumination on the uptake of HONO by TiO$_2$ and found that under illuminated conditions HONO uptake rates also decreased with reaction time. Compared to dark conditions, HONO uptake was enhanced, though no difference in the γ_0 was observed by varying UV illumination from
Similar to dark conditions, all the HONO molecules removed from the gas phase have been converted NO and NO2. Yields of NO and NO2 were determined to be 0.48±0.07 and 0.52±0.08, respectively (El Zein et al., 2013a), independent of RH, temperature, and initial HONO concentration. Under illuminated conditions, γ0 increased to 7.9×10−4 at 10% RH and 280 K, showing negative dependence on RH (up to 14.4%) and no dependence on temperature (275–320 K). Though illumination enhanced HONO uptake compared to dark conditions, further increases in illumination intensity for J(NO2) in the range of 0.002–0.012 s−1 did not affect γ0.

Table 8. Summary of previous laboratory studies on heterogeneous reactions of mineral dust with HONO.

<table>
<thead>
<tr>
<th>Dust</th>
<th>Reference</th>
<th>T (K)</th>
<th>Concentration (molecule cm−3)</th>
<th>Uptake coefficient</th>
<th>Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO2</td>
<td>El Zein and Bedjanian (2012)</td>
<td>275–320</td>
<td>(0.3–3.3)×10^{12}</td>
<td>γ0 was determined to be ∼4.2×10^{−6} at 10% RH and 300 K, showing negative dependence on RH (up to 12.6%) and T (275–320 K). Under illuminated conditions, γ0 increased to ∼3.5×10^{−4} at 10% RH and 280 K, showing negative dependence on RH (up to 60%) and T (275–320 K). Though illumination enhanced HONO uptake compared to dark conditions, further increases in illumination intensity for J(NO2) in the range of 0.002–0.012 s−1 did not affect γ0.</td>
<td>CRFT-MS</td>
</tr>
<tr>
<td></td>
<td>El Zein et al. (2013a)</td>
<td>275–320</td>
<td>(0.5–5)×10^{12}</td>
<td></td>
<td>CRFT-MS</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Romanias et al. (2012b)</td>
<td>275–320</td>
<td>(0.6–3.5)×10^{12}</td>
<td>At 10% RH, γ0 was determined to be ∼1.2×10^{−6} and ∼6.2×10^{−6} under dark and illuminated conditions, respectively. γ0 was found to increase linearly with J(NO2) in the range of 0.002–0.012 s−1. In addition, γ0 decreased with RH, and no dependence on temperature was observed.</td>
<td>CRFT-MS</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>El Zein et al. (2013b)</td>
<td>275–320</td>
<td>(0.6–15.0)×10^{12}</td>
<td>No significant effect of UV illumination, with J(NO2) up to 0.012 s−1, was observed. γ0 was determined to be ∼4.1×10^{−7} at 10% RH and 300 K, showing negative dependence on RH (up to 14.4%) and no dependence on T (275–320 K).</td>
<td>CRFT-MS</td>
</tr>
<tr>
<td>ATD</td>
<td>El Zein et al. (2013b)</td>
<td>275–320</td>
<td>(0.6–15.0)×10^{12}</td>
<td>No significant effect of UV illumination, with J(NO2) up to 0.012 s−1, was observed. γ0 was determined to be ∼9.3×10^{−7} at 10% RH and 275 K, showing negative dependence on RH (up to 84.1%) and no dependence on T (275–320 K).</td>
<td>CRFT-MS</td>
</tr>
</tbody>
</table>

0.002 to 0.012 s−1 (El Zein et al., 2013a). Under illuminated conditions, γ0 is independent of initial HONO concentration but depends inversely on temperature and RH. The effects of temperature (275–320 K) at 0.002% RH and of RH (0.001–60%) at 280 K can be described by the following equation (El Zein et al., 2013a):

\[
y_0 = (3.0 ± 1.5) × 10^{−5} × \exp[(1390 ± 150)/T], \quad (23)
\]

\[
y_0 = 6.9 × 10^{−4} × RH^{−0.3}. \quad (24)
\]

Similar to dark conditions, all the HONO molecules removed from the gas phase have been converted NO and NO2. Yields of NO and NO2 were determined to be 0.48±0.07 and 0.52±0.08, respectively (El Zein et al., 2013a), independent of RH, temperature, and initial HONO concentration.

The uptake of HONO by γ-Al2O3, Fe2O3, and ATD particles was also investigated under dark and illuminated conditions as a function of temperature and RH. Progressive surface deactivation was observed in all the experiments. For uptake onto γ-Al2O3, under both dark and illuminated conditions, γ0(HONO) was found to be independent of initial HONO concentration (0.3×10^{12} to 3.3×10^{12} molecule cm−3) and temperature (275–320 K), though RH has a profound influence. Under dark conditions, γ0 is given by the following equation (Romanias et al., 2012b),

\[
y_0 = 4.8 × 10^{−6} × RH^{−0.61}, \quad (25)
\]

for RH in the range of 0.00014 to 10.5%. UV illumination linearly enhances initial HONO uptake, with γ0 under illumination with J(NO2) equal to 0.012 s−1 given by the following equation (Romanias et al., 2012b),

\[
y_0 = 1.7 × 10^{−5} × RH^{−0.44}, \quad (26)
\]

for RH in the range of 0.0003 to 35.4%. NO and NO2 yields were determined to be 0.40±0.06 and 0.60±0.09 for all the experimental conditions.
Data at 0.001 % RH were presented except for illuminated TiO$_2$ (El Zein et al., 2013b). Values of γ_0 (HONO) were found to be independent of the initial HONO concentration (0.6×10^{12} to 15.0×10^{12} molecule cm$^{-3}$) and temperature (275–320 K), while RH has a significant impact, given by the following equation (El Zein et al., 2013b),

$$\gamma_0 = 1.7 \times 10^{-6} \times \text{RH}^{-0.62},$$

for Fe$_2$O$_3$ and RH in the range of 0.0003 to 14.4 %, and

$$\gamma_0 = 3.8 \times 10^{-6} \times \text{RH}^{-0.61}$$

for ATD and RH in the range of 0.00039 to 84.1 %. NO and NO$_2$ yields, independent of experimental conditions, were reported to be 0.40 ± 0.06 and 0.60 ± 0.09, respectively (El Zein et al., 2013b).

The dependence of γ_0 (HONO) on temperature is displayed in Fig. 15 for different mineral dust under dark and illuminated conditions. No significant effect of temperature was observed for uptake onto Al$_2$O$_3$, Fe$_2$O$_3$, and ATD. When temperature increases from 275 to 320 K, γ_0 (HONO) is reduced by a factor of about 2 under both dark and illuminated conditions for TiO$_2$. It is interesting to note that UV illumination has different impacts on HONO uptake for different minerals. HONO uptake onto Al$_2$O$_3$ is enhanced by UV radiation, and the extent of enhancement shows linear dependence on illumination intensity for J(NO$_2$) in the range of 0.002–0.012 s$^{-1}$ (Romanias et al., 2012b). In contrast, photoenhancement was found to be insignificant for ATD and Fe$_2$O$_3$. Fe$_2$O$_3$ with J(NO$_2$) up to 0.012 s$^{-1}$ (El Zein et al., 2013b). Significant enhancement in γ_0 (HONO) was observed for illuminated TiO$_2$ with J(NO$_2$) of 0.002 s$^{-1}$ when compared to dark conditions, especially at evaluated RH as shown in Fig. 16; however, further increases in illumination intensity with J(NO$_2$) up to 0.012 s$^{-1}$ did not lead to further increases in γ_0 (HONO) (El Zein et al., 2013a). In addition, we note that NO and NO$_2$ yields were found to be 0.40 and 0.60 for all the four types of minerals investigated, independent of experimental conditions.

Figure 16 shows the effects of RH on γ_0 (HONO) at around room temperature for TiO$_2$, Al$_2$O$_3$, ATD, and Fe$_2$O$_3$. Most of the measurements were only carried out at low RH (<15 %), and thus their atmospheric relevance is rather limited. Experiments using ATD and illuminated TiO$_2$ particles were conducted at RH over a wide range, and a negative dependence of γ_0 (HONO) on RH was observed. When RH increases from 10 to 60 %, γ_0 (HONO) is reduced by ~66 and ~42 % for ATD and illuminated TiO$_2$, respectively.

3.5.1 Discussion and atmospheric implication

All the four studies shown in Figs. 15 and 16 were carried out by the same group. Furthermore, heterogeneous interactions of HONO with authentic dust and clay minerals, which are the major components for tropospheric dust, have not been explored yet. Future studies can provide more scientific insights to reaction mechanisms and better quantify uptake kinetics.

In this work we use γ_0 (HONO) for ATD, the only authentic dust sample investigated, to preliminarily assess the significance of heterogeneous uptake by mineral dust as a HONO sink. As shown in Fig. 16, γ_0 (HONO) decreases...
from 9.3×10^{-7} at 10% to 2.6×10^{-7} at 80%. A γ (HONO) value of 1×10^{-6} is adopted here to calculate τ_{net} (HONO) with respect to heterogeneous reaction with mineral dust. This may represent an upper limit for its atmospheric significance, because (i) at typical RH found in the troposphere, γ_0 (HONO) should be $< 1 \times 10^{-6}$ according to the work by El Zein et al. (2013b); and (ii) surface deactivation was observed, and thus the average γ (HONO) should be smaller than γ_0 (HONO) (El Zein et al., 2013b). Using Eq. (6), τ_{net} (HONO) is calculated to be ~ 57 days for dust mass concentration of $1000 \mu g \text{ m}^{-3}$ which can only occur during dust storms. For comparison, typical HONO lifetimes in the troposphere are estimated to be 10–20 min, with the major sink being photolysis (in Sect. 2.1). Therefore, heterogeneous uptake by mineral dust is a negligible sink for HONO in the troposphere.

3.6 N$_2$O$_5$ and NO$_3$ radicals

N$_2$O$_5$ and NO$_3$ in the troposphere are in dynamic equilibrium, as introduced in Sect. 2.1.3. Therefore, their heterogeneous reactions with mineral dust are discussed together in this section.

3.6.1 N$_2$O$_5$

Heterogeneous reactions of N$_2$O$_5$ with mineral dust particles were investigated for the first time by Seisel et al. (2005), using DRIFTS and a Knudsen cell reactor coupled to quadruple mass spectrometry. The initial uptake coefficient of N$_2$O$_5$ on Saharan dust was determined to be 0.080 ± 0.003 at 298 K and slowly decreased to a steady-state value of 0.013±0.003 (Seisel et al., 2005). Formation of nitrate on dust particles was observed, and N$_2$O$_5$ uptake was suggested to proceed with two mechanisms, i.e., heterogeneous hydrolysis and its reaction with surface OH groups (Seisel et al., 2005). A Knudsen cell reactor was also used by Karagulian et al. (2006) to investigate heterogeneous uptake of N$_2$O$_5$ by several different types of mineral dust. Both the initial and steady-state uptake coefficient were found to decrease with increasing initial N$_2$O$_5$ concentrations. When N$_2$O$_5$ concentration was $(4.0 \pm 1.0) \times 10^{11}$ molecule cm$^{-3}$, γ_0 and γ_{ss} were determined to be 0.30 ± 0.08 and 0.20 ± 0.05 for Saharan dust, 0.12 ± 0.04 and 0.021 ± 0.006 for CaCO$_3$, 0.20 ± 0.06 and 0.11 ± 0.03 for ATD, 0.16 ± 0.04 and 0.021 ± 0.006 for kaolinite, and 0.43 ± 0.13 and 0.043 ± 0.013 for natural limestone, respectively. When N$_2$O$_5$ concentration increased to $(3.8 \pm 0.5) \times 10^{12}$ molecule cm$^{-3}$, γ_0 and γ_{ss} were determined to be 0.090 ± 0.026 and 0.059 ± 0.016 for Saharan dust, 0.033 ± 0.010 and 0.0062 ± 0.0018 for CaCO$_3$, 0.064 ± 0.019 and 0.016 ± 0.004 for ATD, 0.14 ± 0.04 and 0.022 ± 0.006 for kaolinite, and 0.011 ± 0.003 and 0.0022 ± 0.0006 for natural limestone, respectively (Karagulian et al., 2006). Formation of HONO in the gas phase was detected, with production yield varying with dust mineralogy. The postulated reason is that partitioning of formed HNO$_3$ between gas and particle phases may vary for different dust samples (Karagulian et al., 2006).

Wagner et al. (2008) utilized a Knudsen cell reactor to study heterogeneous uptake of N$_2$O$_5$ by Saharan dust, ATD, and CaCO$_3$ particles at 296 ± 2 K. Interestingly, surface deactivation was only observed for CaCO$_3$ under their experimental conditions. Therefore, γ_0 and γ_{ss} are equal for the other two types of dust, being 0.037 ± 0.012 for Saharan dust and 0.022 ± 0.008 for ATD, respectively (Wagner et al., 2008). The initial uptake coefficient was reported to be 0.05 ± 0.02 for CaCO$_3$; preheating could reduce its heterogeneous reactivity towards N$_2$O$_5$ (Wagner et al., 2008), very likely due to the loss of surface-adsorbed water and surface OH groups. It should be noted that all the uptake coefficients measured by using Knudsen cell reactors are based on the projected area of dust samples (Seisel et al., 2005; Karagulian et al., 2006; Wagner et al., 2008).

Heterogeneous reactions of N$_2$O$_5$ with airborne mineral dust particles were also investigated by several previous studies, with the first one being carried out by Mogili et al. (2006b). In this study, in situ FTIR measurements were carried out to determine N$_2$O$_5$ loss due to reactions with dust particles in an environmental chamber at 290 K. The uptake coefficients of N$_2$O$_5$, based on the BET area of dust particles, increase with RH for SiO$_2$, from $(4.4 \pm 0.4) \times 10^{-5}$ at < 1% RH to $(9.3 \pm 0.1) \times 10^{-5}$ at 11% RH, $(1.2 \pm 0.2) \times 10^{-4}$ at 19% RH, and $(1.8 \pm 0.4) \times 10^{-4}$ at 43% RH (Mogili et al., 2006b). In addition, γ (N$_2$O$_5$) at < 1% RH was determined to be $(1.9 \pm 0.2) \times 10^{-4}$ for CaCO$_3$, $(9.8 \pm 0.1) \times 10^{-4}$ for kaolinite, $(4.0 \pm 0.4) \times 10^{-4}$ for α-Fe$_2$O$_3$, and $(1.9 \pm 0.2) \times 10^{-4}$ for montmorillonite (Mogili et al., 2006b).

An atmospheric pressure aerosol flow tube was deployed by Wagner et al. (2008, 2009) to investigate heterogeneous reactions of N$_2$O$_5$ with Saharan dust, ATD, calcite, and SiO$_2$ aerosol particles at 296 ± 2 K, and N$_2$O$_5$ decays in the flow tube were detected by using a modified chemiluminescence method. Slightly negative dependence of γ (N$_2$O$_5$) on RH was observed for Saharan dust, ATD, and SiO$_2$ aerosol particles. The value of γ (N$_2$O$_5$) was determined to be 0.026 ± 0.004 at 0% RH, 0.016 ± 0.004 at 29% RH, and 0.010 ± 0.004 at 58% RH for Saharan dust (Wagner et al., 2008); 0.0086 ± 0.0006 at 0% RH and 0.0045 ± 0.0005 at 29% for SiO$_2$ (Wagner et al., 2009); and 0.0098 ± 0.0010 at 0% RH and 0.0073 ± 0.0007 at 29% RH for ATD (Wagner et al., 2009), respectively. In contrast, γ (N$_2$O$_5$) increases with RH for CaCO$_3$, from 0.0048 ± 0.0007 at 0% RH to 0.0194 ± 0.0022 at 71% RH (Wagner et al., 2009). It should be pointed out that in the original paper (Wagner et al., 2008) the uptake coefficients for Saharan dust were based on the aerosol surface area concentrations after the shape factor correction was applied. In order to keep consistency with other studies, γ (N$_2$O$_5$) reported by Wagner et al. (2008) has been recalculated in this review without taking into account the shape factor of Saharan dust.
Tang and coworkers systematically investigated the dependence of γ on RH and dust mineralogy, using aerosol flow tubes with N_2O_5 measured by a modified chemiluminescence method (Tang et al., 2012, 2014c) or cavity ring-down spectroscopy (Tang et al., 2014a, d). Within experimental uncertainties, γ was determined to be 0.02 ± 0.01 for Saharan dust (Tang et al., 2012), independent of RH (0–76%) and initial N_2O_5 concentration (5×10^{11} to 3×10^{13} molecule cm$^{-3}$). Product analysis suggests that N_2O_5 is converted to particulate nitrate after heterogeneous reactions of mineral dust aerosol.
during their reaction with N_2O_5 show good agreement in the gas phase is negligible (Tang et al., 2012). A strong negative effect of RH on $\gamma(N_2O_5)$ was found for uptake onto illite, with γ_{ill} at 0 \% RH to 0.091 ± 0.039 at 67 \% RH (Tang et al., 2014c). The value of $\gamma(N_2O_5)$ on SiO$_2$ particles decreases from 0.0072 \pm 0.0006 at (7 \% RH to 0.0053 \pm 0.0008 at (40 \% RH (Tang et al., 2014a), also showing a weak negative RH dependence. RH exhibits complex effects on heterogeneous reaction of N_2O_5 with TiO$_2$ particles, and the reported $\gamma(N_2O_5)$ first decreases with RH from (1.83 \pm 0.32) \times 10^{-3}$ at (5 \% RH to (1.02 \pm 0.20) \times 10^{-2} at (23 \% RH, and then increases with RH to (4.47 \pm 2.04) \times 10^{-3} at (60 \% RH (Tang et al., 2014e). Analysis of optically levitated single-micrometer-sized SiO$_2$ particles using Raman spectroscopy during their reaction with N_2O_5 (Tang et al., 2014a) suggests that HNO$_3$ formed in this reaction can partition between gas and particle phases, with partitioning largely governed by RH.

Figure 17 summarizes $\gamma(N_2O_5)$ onto Saharan dust reported by previous work. Values of $\gamma(N_2O_5)$ reported by the three studies using Knudsen cell reactors (Seisel et al., 2005; Karagulian et al., 2006; Wagner et al., 2008) show large variation, with γ_{Seisel} ranging from 0.013 \pm 0.003 to 0.20 \pm 0.05. This comparison demonstrates that sample preparation methods could heavily influence reported uptake coefficients using particles supported on a substrate, even though they all used Knudsen cell reactors (as discussed in Sect. 2.2.1). In addition, significant surface saturation was observed by Seisel et al. (2005) and Karagulian et al. (2006), but not by Wagner et al. (2008). For the same reason, $\gamma(N_2O_5)$ reported by two Knudsen studies (Karagulian et al., 2006; Wagner et al., 2008) exhibit significant discrepancies for Arizona test dust (and reasonably good agreement is found for CaCO$_3$). Instead, the two aerosol flow tube studies (Wagner et al., 2008; Tang et al., 2012) show good agreement in $\gamma(N_2O_5)$ onto Saharan dust considering experimental uncertainties, though RH was found to have a slightly negative effect by Wagner et al. (2008) while no significant effect of RH was observed by Tang et al. (2012). Since cavity ring-down spectroscopy used by Tang et al. (2012) to detect N_2O_5 is more sensitive and selective than the chemiluminescence method used by Wagner et al. (2008), in this work we choose to use the uptake coefficient (0.02 \pm 0.01) reported by Tang et al. (2012), as recommended by the IUPAC task group, to assess $\gamma_{\text{het}}(N_2O_5)$ in the troposphere.

It is somehow unexpected that $\gamma(N_2O_5)$ onto SiO$_2$ reported by the first two studies (Mogili et al., 2006b; Wagner et al., 2009), both using aerosol samples, differ by about 2 orders of magnitude. A third study (Tang et al., 2014a), using an aerosol flow tube, concluded that this discrepancy is largely due to the fact that SiO$_2$ particles are likely to be porous. Mogili et al. (2006b) and Wagner et al. (2009) used BET surface area and the Stokes diameter to calculate the aerosol surface area, respectively. If BET surface area is used, values of $\gamma(N_2O_5)$ reported by Tang et al. (2014a) show good agreement with those determined by Mogili et al. (2006b); if mobility diameters are used to derive aerosol surface area, they agree well with those reported by Wagner et al. (2009). Nevertheless, some discrepancies still remain: Wagner et al. (2009) and Tang et al. (2014a) suggested a small negative dependence of $\gamma(N_2O_5)$ onto RH, and Mogili et al. (2006b) found that $\gamma(N_2O_5)$ significantly increases with RH. In addition, $\gamma(N_2O_5)$ onto CaCO$_3$ aerosol particles at < 1 \% RH, as reported by Mogili et al. (2006b) and Wagner et al. (2009), differs by a factor of > 20. It is not yet clear if the difference in calculating surface area (BET surface area vs. Stokes-diameter-based surface area) could explain such a large difference, and further work is required to resolve this issue.

Aerosol flow tubes have been deployed to investigate heterogeneous interactions between N_2O_5 and different types of mineral dust, with reported $\gamma(N_2O_5)$ summarized in Fig. 18. Two distinctive features can be identified. First, different minerals exhibit very different heterogeneous reactivity towards N_2O_5. Values of $\gamma(N_2O_5)$ at < 10 \% RH increase from (1.83 \pm 0.32) \times 10^{-3} for TiO$_2$ to 0.091 \pm 0.039 for illite, spanning over almost 2 orders of magnitude. Second, RH (and thus surface-adsorbed water) plays important and
M. Tang et al.: Heterogeneous reactions of mineral dust aerosol

various roles in uptake kinetics. For example, increasing RH significantly suppresses N_2O_5 uptake onto illite but largely enhances its uptake onto CaCO$_3$, while it does not show a significant effect for Saharan dust. In this paper $\gamma(N_2O_5)$ onto Saharan dust is used to assess the significance of heterogeneous reactions of N_2O_5 with mineral dust. Mineralogy of Asian dust is different from Saharan dust, and thus their heterogeneous reactivity (and probably the effect of RH) towards N_2O_5 can be different. Considering that Asian dust is transported over eastern Asia with high levels of NO$_x$ and O$_3$ (Zhang et al., 2007; Geng et al., 2008; Shao et al., 2009; Ding et al., 2013; Itahashi et al., 2014) and thus also N_2O_5 (Brown et al., 2016; Tham et al., 2016; Wang et al., 2016), heterogeneous reactions of N_2O_5 with Asian dust deserve further investigation.

Using $\gamma(N_2O_5)$ of 0.02, $\tau_{het}(N_2O_5)$ are estimated to be ~ 10, ~ 1 h, and ~ 6 min for dust loading of 10, 100, and 1000 μm$^{-3}$, respectively. N_2O_5 lifetimes in the troposphere is typically in the range of several minutes to several hours, as shown in Table 1. Therefore, heterogeneous uptake by mineral dust could contribute significantly to and in some regions even dominate tropospheric N_2O_5 removal. Since uptake of N_2O_5 leads to the formation of nitrate, it can also substantially modify chemical composition and physicochemical properties of mineral dust.

A global modeling study (Dentener and Crutzen, 1993) suggested that including heterogeneous reactions of N_2O_5 with tropospheric aerosol particles with $\gamma(N_2O_5)$ equal to 0.1 could reduce modeled yearly average global NO$_x$ burden by 50%. It is found by other global and regional modeling studies (Evans and Jacob, 2005; Chang et al., 2016) that modeled NO$_x$ and O$_3$ concentrations agree better with observations if $\gamma(N_2O_5)$ parameterization based on new laboratory results is adopted. In the study by Evans and Jacob (2005), $\gamma(N_2O_5)$ was set to be 0.01 for mineral dust, independent of RH. A recent modeling study (Macintyre and Evans, 2010) suggests that simulated NO$_x$, O$_3$, and OH concentrations are very sensitive to the choice of $\gamma(N_2O_5)$ in the range of 0.001–0.02, which significantly overlaps with the range of laboratory measured $\gamma(N_2O_5)$ for mineral dust particles. Therefore, in order to better assess the impacts of heterogeneous reactions of N_2O_5 with mineral dust on tropospheric oxidation capacity, $\gamma(N_2O_5)$ and its dependence on mineralogy and RH should be better understood.

Mineralogy and composition of mineral dust aerosol particles in the ambient air are always more complex than those for dust samples used in laboratory studies. Measurements of NO$_3$, N_2O_5, and other trace gases and aerosols in the troposphere enable steady-state NO$_3$ and N_2O_5 lifetimes to be determined and $\gamma(N_2O_5)$ onto ambient aerosol particles to be derived (Brown et al., 2006, 2009; Morgan et al., 2015; Phillips et al., 2016). It will be very beneficial to investigate N_2O_5 uptake (and other reactive trace gases as well) by ambient mineral dust aerosol. Recently such experimental apparatus, based on the aerosol flow tube technique, has been developed and deployed to directly measure $\gamma(N_2O_5)$ onto ambient aerosol particles (Bertram et al., 2009a, b). To our knowledge these measurements have never been carried out in dust-impacted regions yet, though they will undoubtedly improve our understanding of heterogeneous reactions of N_2O_5 with mineral dust in the troposphere.

3.6.2 NO$_3$ radicals

To our knowledge only two previous studies have explored the heterogeneous uptake of NO$_3$ radicals by mineral dust particles. Heterogeneous reactions of NO$_3$ radicals with mineral dust were investigated for the first time at 298 ± 2 K, using a Knudsen cell reactor (Karagulian and Rossi, 2005). Products observed in the gas phase include N_2O_5 (formed in the Eley–Rideal reaction of NO$_3$ with NO$_2$ on the dust surface) and HNO$_3$ (formed in the heterogeneous reaction of N_2O_5 and subsequently released into the gas phase) (Karagulian and Rossi, 2005). Surface deactivation occurred for all types of dust particles investigated. Dependence of uptake kinetics on the initial NO$_3$ concentration was observed (Karagulian and Rossi, 2005). When [NO$_3$]$_0$ was (7.0 ± 1.0) $\times 10^{11}$ cm$^{-3}$, the initial and steady-state uptake coefficients (γ_0 and γ_{ss}) were determined to be 0.13 ± 0.10 and 0.067 ± 0.040 for CaCO$_3$, 0.12 ± 0.08 and 0.034 ± 0.016 for natural limestone, 0.11 ± 0.08 and 0.14 ± 0.02 for kaolinite, 0.23 ± 0.20 and 0.12 ± 0.08 for Saharan dust, and 0.2 ± 0.1 and 0.10 ± 0.06 for ATD, respectively. When [NO$_3$]$_0$ was (4.0 ± 1.0) $\times 10^{12}$ cm$^{-3}$, γ_0 and γ_{ss} were determined to be 0.14 ± 0.05 and 0.014 ± 0.004 for CaCO$_3$, 0.20 ± 0.07 and 0.022 ± 0.005 for natural limestone, 0.12 ± 0.04 and 0.050 ± 0.014 for kaolinite, 0.16 ± 0.05 and 0.065 ± 0.012 for Saharan dust, and 0.14 ± 0.04 and 0.025 ± 0.007 for ATD, respectively.
In the second study (Tang et al., 2010), a novel relative rate method was developed to investigate heterogeneous uptake of NO$_3$ and N$_2$O$_5$ by mineral dust. Changes in NO$_3$ and N$_2$O$_5$ concentrations due to reactions with dust particles (loaded on filters) were simultaneously detected by cavity ring-down spectroscopy. Experiments were carried out at room temperature (296±2 K) and at different RH up to 70%. The value of $\gamma(\text{NO}_3)/\gamma(\text{N}_2\text{O}_5)$ was reported to be 0.9±0.4 for Saharan dust particles, independent of RH within the experimental uncertainties (Tang et al., 2010). In addition, even though very low levels of NO$_3$ and N$_2$O$_5$ (a few hundred pptv) were used, surface deactivation was still observed for both species (Tang et al., 2010).

With the reported $\gamma(\text{NO}_3)/\gamma(\text{N}_2\text{O}_5)$ ratio of 0.9 (Tang et al., 2010), $\gamma(\text{NO}_3)$ of 0.018 is thus adopted to evaluate $\tau_{\text{het}}(\text{NO}_3)$ due to its heterogeneous uptake by mineral dust, based on the $\gamma(\text{N}_2\text{O}_5)$ value of 0.02 (Sect. 3.6.1). Using Eq. (6), mineral dust mass concentrations of 10, 100, and 1000 µm$^{-3}$ result in $\tau_{\text{het}}(\text{NO}_3)$ of ~9 h, ~52 min, and ~5 min, respectively. Field measurements, as summarized in Table 1, suggest that tropospheric NO$_3$ lifetimes are typically several minutes. Therefore, uptake by mineral dust is unlikely to be a significant sink for NO$_3$ in the troposphere, except for regions which are close to dust sources and thus heavily impacted by dust storms. Similar conclusions were drawn by Tang et al. (2010), who used an uptake coefficient of 0.009, which is a factor of 2 smaller than the value used here. 3-D GEOS-Chem model simulations suggest that modeled O$_3$ appears to be insensitive to the choice of $\gamma(\text{NO}_3)$ in the range of 0.0001 to 0.1 (Mao et al., 2013b). To conclude, heterogeneous reaction with mineral dust is not an important sink for tropospheric NO$_3$ radicals except in regions with heavy dust loadings.

4 Summary and outlook

It has been widely recognized that heterogeneous reactions with mineral dust particles can significantly affect tropospheric oxidation capacity directly and indirectly. These reactions can also change the composition of dust particles, thereby modifying their physicochemical properties important for direct and indirect radiative forcing. In the past two decades there have been a large number of laboratory (as well as field and modeling) studies which have examined these reactions. In this paper we provide a comprehensive and timely review of laboratory studies of heterogeneous reactions of mineral dust aerosol with OH, NO$_3$, and O$_3$ as well as several other reactive species (including HO$_2$, H$_2$O$_2$, HCHO, HONO, and N$_2$O$_5$) which are directly related to OH, NO$_3$, and O$_3$. Lifetimes of these species with respect to heterogeneous uptake by mineral dust are compared to their lifetimes due to other major loss processes in the troposphere in order to provide a quick assessment of the atmospheric significance.

<table>
<thead>
<tr>
<th>Table 10. Summary of previous laboratory studies on heterogeneous reactions of mineral dust with NO$_3$ radicals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust</td>
</tr>
<tr>
<td>Saharan dust</td>
</tr>
<tr>
<td>Tang et al. (2010)</td>
</tr>
<tr>
<td>CaCO$_3$</td>
</tr>
<tr>
<td>Kaolinite</td>
</tr>
<tr>
<td>Limestone</td>
</tr>
<tr>
<td>ATD</td>
</tr>
</tbody>
</table>
of heterogeneous reactions as sinks for these species. In addition, representative field and modeling work is also discussed to further illustrate the roles these heterogeneous reactions play in tropospheric oxidation capacity. As shown in Sect. 3, these studies have significantly improved our understanding of the effects of these reactions on tropospheric oxidation capacity. Nevertheless, there are still a number of open questions which cannot be answered by laboratory work alone but only by close collaboration among laboratory, field, and modeling studies. Several major challenges, and the strategies we propose to address these challenges, are outlined below.

(1) Mineral dust in the troposphere is in fact mineralogically complex and its mineralogy vary with dust sources and also residence time in the troposphere (Claquin et al., 1999; Ta et al., 2003; Zhang et al., 2003a; Nickovic et al., 2012; Journet et al., 2014; Scanza et al., 2015). Different minerals can exhibit large variabilities in heterogeneous reactivity towards trace gases, as shown by Tables 4–10. However, Tables 4–10 also reveal that simple oxides (e.g., SiO$_2$ and Al$_2$O$_3$) and CaCO$_3$ have been much more widely investigated compared to authentic dust samples (except, probably, ATD) and clay minerals which are the major components of mineral dust aerosol particles (Claquin et al., 1999). The relative importance of clay minerals will be increased after long-range transport due to their smaller sizes compared to SiO$_2$ and CaCO$_3$. Therefore, more attention should be paid in future work to heterogeneous reactions of clay minerals and authentic dust samples.

(2) In the last several years, the important roles that RH (and thus surface-adsorbed water) plays in heterogeneous reactions of mineral dust have been widely recognized by many studies and discussed in a recent review paper (Rubasinghege and Grassian, 2013). Tables 4–10 show that most of previous studies have been conducted at RH $< 80\%$, and heterogeneous reactivity at higher RH largely remains unknown. In addition, effects of RH on heterogeneous reactions of mineral dust with a few important reactive trace gases, such as HO$_2$ radicals (Bedjianian et al., 2013a; Matthews et al., 2014) and O$_3$ (Sullivan et al., 2004; Chang et al., 2005; Mogili et al., 2006a), are still under debate. It has been known that heterogeneous processing can modify chemical composition and hygroscopicity of mineral dust particles (Tang et al., 2016a), and at evaluated RH aged dust particles may consist of a solid core and an aqueous shell (Krueger et al., 2003b; Laskin et al., 2005a; Liu et al., 2008b; Shi et al., 2008; Li and Shao, 2009; Ma et al., 2012). Under such circumstances, reactions are no longer limited to the particle surface but instead involve gas, liquid, and solid phases and their interfaces, and hence mutual influence among chemical reactivity, composition, and physicochemical properties has to be taken into account (Tang et al., 2016a).

(3) Temperature in the troposphere varies from < 200 to > 300 K. However, most laboratory studies of heterogeneous reactions of mineral dust were carried out at room temperature (around 296 K). Once lifted into the atmosphere, mineral dust aerosol is mainly transported in the free troposphere, in which temperature is much lower than that at the ground level. Some work has started to examine the influence of temperature on heterogeneous uptake by mineral dust (Michel et al., 2003; Xu et al., 2006, 2010, 2011; Wu et al., 2011, 2013b; Romanias et al., 2012a, b, 2013; Zhou et al., 2012, 2016; Bedjianian et al., 2013a; El Zein et al., 2013a, b, 2014; Hou et al., 2016). It has been found that temperature may have significant effects on some reactions. However, to the best of our knowledge, no study has explored the influence of temperature on heterogeneous reactions of airborne mineral dust particles.

(4) Laboratory studies may not entirely mimic actual heterogeneous reactions in the troposphere for several reasons. First of all, laboratory studies are typically carried out with timescales of < 1 min to several hours, compared to lifetimes of a few days for mineral dust in the troposphere. Secondly, it is not uncommon that concentrations of reactive trace gases used in laboratory work are several orders of magnitude larger than those in the troposphere. These two aspects can make it nontrivial to extrapolate laboratory results to the real atmosphere. In addition, dust samples used in laboratory studies, even when authentic dust samples are used, do not exactly mimic the complexity of ambient dust particles in composition and mineralogy. Very recently a new type of experiment, sometimes called “laboratory work in the field”, can at least partly provide solutions to this challenge. For example, an aerosol flow tube has been deployed to explore heterogeneous uptake of N$_2$O$_5$ by ambient aerosol particles at a few locations (Bertram et al., 2009a, b; Ryder et al., 2014), revealing the roles of RH and particle composition in heterogeneous reactivity of ambient aerosol particles. To our knowledge, this technique has not been used to investigate heterogeneous uptake of N$_2$O$_3$ by ambient mineral dust aerosol. This technique can also be extended to examine heterogeneous reactions of ambient aerosol particles with other reactive trace gases, especially those whose heterogeneous reactions are anticipated to be efficient (e.g., HO$_2$ and H$_2$O$_2$).

(5) Decreases in heterogeneous reactivity due to surface passivation have been observed by many studies using dust powders supported by substrates. On the other hand, increases in heterogeneous reactivity, due to conversion of solid particles to aqueous droplets with solid
cores (caused by formation of hygroscopic materials), have also been reported. In addition, it has been widely recognized that the copresence of two or more reactive trace gases may change the rates of heterogeneous reactions of each individual gases (Li et al., 2006; Raff et al., 2009; Liu et al., 2012; Rubasinghe and Grassian, 2012; Wu et al., 2013a; Zhao et al., 2015; Yang et al., 2016a), typically termed as synergistic effects. Parameterization of these complex processes is very difficult, and the lack of sophisticated parameterizations impedes us from a quantitative assessment of their atmospheric significance via modeling studies. Kinetic models have been developed to integrate physical and chemical processes in and between different phases (Pöschl et al., 2007; Shiraia et al., 2012; Berkemeier et al., 2013), and these models have been successfully used to investigate multiphase chemistry of aqueous aerosol particles and cloud droplets (Shiraia et al., 2011; Arangio et al., 2015; Pöschl and Shiraia, 2015). Future efforts devoted to development and application of comprehensive kinetic models to study heterogeneous and multiphase reactions of mineral dust particles would largely improve our understanding in the field.

(6) It has been found that UV and visible radiation can substantially enhance the heterogeneous reactivity of mineral dust towards several trace gases, including but not limited to H$_2$O$_2$, O$_3$, and HCHO, and in some cases even reactive mineral surfaces which have been passivated (Cwiertny et al., 2008; Chen et al., 2012; George et al., 2015). In addition, photolysis of materials (such as nitrate) formed on mineral surface can also be sources for some trace gases (Nanayakkara et al., 2013, 2014; Gankanda and Grassian, 2014). Although the effects of photoradiation in heterogeneous reactions with mineral dust have been recognized for more than 1 decade, it largely remains unclear to which extent these reactions are photonenhanced under ambient solar radiation, and thus quantitative evaluation of impacts of heterogeneous photochemistry on tropospheric oxidation capacity is lacking.

(7) There is still a considerably large gap between laboratory work and modeling studies used to explain field measurements and predict future changes. One reason is that the communication and collaboration between laboratory and modeling communities, though enhanced in the past few decades, are still not enough and should be further encouraged and stimulated in future. Furthermore, many laboratory studies have been designed from the perspective of classical chemical kinetics such that, although experimental results are beautiful, they are difficult to be parameterized and then included in models. As mentioned, heterogeneous reactivity is highly dependent on temperature, RH, copresence of other trace gases, and mutual influences among these factors. Given that most models are capable of resolving and assimilating meteorological variables and trace-gas concentrations at high temporal resolution, multivariate analysis and integrated numerical expressions are encouraged to be conducted in laboratory studies so as to better characterize heterogeneous chemistry and its climate and environmental effects in numerical models. Therefore, it is suggested that when a laboratory study is designed, it should be kept in mind how experimental results can be used by modeling studies. On the other hand, modeling work is encouraged to include new laboratory results in numerical simulations and to identify missing reactions and key parameters which deserve further laboratory investigation. Field campaigns which are specifically designed to assess the impacts of mineral dust aerosol on tropospheric oxidation capacity have proved to be very beneficial (de Reus et al., 2000, 2005; Galy-Lacaux et al., 2001; Seinfeld et al., 2004; Tang et al., 2004; Umann et al., 2005; Arimoto et al., 2006; Song et al., 2007), and more campaigns of this type should be organized. Overall, as urged by a few recent articles (Kolb et al., 2010; Abbatt et al., 2014; Burkholder et al., 2017), the three-legged stool approach (laboratory studies, field observations, and modeling studies) adopted by atmospheric chemistry research for a long time should be emphasized, and mutual communication and active collaboration among these three “legs” should be further enhanced.

Data availability. The data used in this work are available from Mingjin Tang (mingjintang@gig.ac.cn) upon request.

Competing interests. The authors declare that they have no conflict of interest.

Special issue statement. This article is part of the special issue “Regional transport and transformation of air pollution in eastern China”. It does not belong to a conference.

Acknowledgements. The preparation of this paper was inspired by the first International Workshop on Heterogeneous Kinetics Related to Atmospheric Aerosols (August 2015, Beijing, China), endorsed by the International Global Atmospheric Chemistry (IGAC) Project, and Mingjin Tang and Tong Zhu would like to thank all the participants for their valuable presentations and discussion. Financial support provided by Chinese National Science Foundation (91644106 and 21522701), Chinese Academy of Sciences international collaborative project (132744KYSB20160036), and State Key Laboratory of Organic Geochemistry (SKLOGA201603A) is acknowledged. Mingjin Tang is also sponsored by Chinese Academy of Sciences Pioneer Hundred Talents Program. This is contribution no. IS-2436 from GIGCAS.
References

Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L., and Prather, K. A.: Comparison of the mixing state of long-range

www.atmos-chem-phys.net/17/11727/2017/ Atmos. Chem. Phys., 17, 11727–11777, 2017

Hoffman, R. C., Gebel, M. E., Fox, B. S., and Finlayson-Pitts, B. J.: Knudsen cell studies of the reactions of N2O5 and ClONO2 with...

Macintyre, H. L. and Evans, M. J.: Parameterisation and impact of aerosol uptake of HO2 on a global tropospheric model, Atmos.
M. Tang et al.: Heterogeneous reactions of mineral dust aerosol

M. Tang et al.: Heterogeneous reactions of mineral dust aerosol

Seinfeld, J. H., Carmichael, G. R., Arimoto, R., Conant, W. C., Brechtel, F. J., Bates, T. S., Cahill, T. A., Clarke, A. D., Do-

Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A.: Timescale for hygroscopic conversion of calcite mineral particles through heterogeneous
Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M.,
Roberts, G. C., and Prather, K. A.: Effect of chemical mixing state
on the hygroscopicity and cloud nucleation properties of
calcium mineral dust particles, Atmos. Chem. Phys., 9, 3303–3316,
https://doi.org/10.5194/acp-9-3303-2009, 2009b.
Sun, S., Ding, J., Bao, J., Gao, C., Qi, Z., and Li, C.: Photocatalytic
oxidation of gaseous formaldehyde on TiO2: an in situ DRIFTS
Syomin, D. A. and Finlayson-Pitts, B. J.: HONO decomposition on
borosilicate glass surfaces: implications for environmental cham-
ber studies and field experiments, Phys. Chem. Chem. Phys., 5,
Ta, W. Q., Xiao, Z., Qu, J. J., Yang, G. S., and Wang, T.: Character-
istics of dust particles from the desert/Gobi area of northwestern
China during dust-storm periods, Environ. Geol., 43, 667–679,
2003.
Taatjes, C. A., Welz, O., Eskola, A. J., Savee, J. D., Scheer, A. M.,
Shallcross, D. E., Rotavera, B., Lee, E. P. F., Dyke, J. M.,
Mok, D. K. W., Osborn, D. L., and Percival, C. J.: Direct measure-
ments of conformer-dependent reactivity of the Criegee inter-
Taatjes, C. A., Shallcross, D. E., and Percival, C. J.: Research fron-
tiers in the chemistry of Criegee intermediates and tropospheric
of NO3 and N2O5 to Saharan dust, ambient urban aerosol and soot:
a relative rate study, Atmos. Chem. Phys., 10, 2965–2974,
https://doi.org/10.5194/acp-10-2965-2010, 2010.
and mechanism of the heterogeneous reaction of N2O5 with min-
eral dust particles, Phys. Chem. Chem. Phys., 14, 8551–8561,
2012.
Tang, J. M., Camp, J. C. J., Rkiouak, L., McGregor, J., Wat-
and single particle optical levitation-raman spectroscopy stud-
Tang, J. M., Cox, R. A., and Kalberer, M.: Compilation and evalua-
tion of gas phase diffusion coefficients of reactive trace
gases in the atmosphere: volume 1. Inorganic compounds, At-
mos. Chem. Phys., 14, 9233–9247, https://doi.org/10.5194/acp-
14-9233-2014, 2014b.
Tang, J. M., Schuster, G., and Crowley, J. N.: Heterogeneous reac-
tion of N2O5 with illite and Arizona test dust particles, Atmos.
Chem. Phys., 14, 245–254, https://doi.org/10.5194/acp-14-245-
2014, 2014c.
Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L.,
Archibald, A. T., Braesicke, P., Pyle, J. A., McGregor, J., Watson,
I. M., Cox, R. A., and Kalberer, M.: Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for strato-
spheric particle injection, Atmos. Chem. Phys., 14, 6035–6048,
https://doi.org/10.5194/acp-14-6035-2014, 2014d.
Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L.,
Archibald, A. T., Braesicke, P., Pyle, J. A., McGregor, J., Watson,
I. M., Cox, R. A., and Kalberer, M.: Corrigendum to “Heteroge-
nous reaction of N2O5 with airborne TiO2 particles and its im-
plementation for stratospheric particle injection” published in Atmos.
8233–8234, https://doi.org/10.5194/acp-14-8233-2014, 2014e.
of reactive trace gases in the atmosphere: Volume 2. Diffusivi-
ties of organic compounds, pressure-normalised mean free paths,
and average Knudsen numbers for gas uptake calculations, At-
mos. Chem. Phys., 15, 5585–5598, https://doi.org/10.5194/acp-
Tang, M. J., Cziczo, D. J., and Grassian, V. H.: Interactions of wa-
ter with mineral dust aerosols: water adsorption, hygroscopicity,
cloud condensation and ice nucleation, Chem. Rev., 116, 4205–
4259, 2016a.
Tang, M., Keeble, J., Telford, P. J., Pope, F. D., Braesicke, P., Griff-
iths, P. T., Abraham, N. L., McGregor, J., Watson, I. M., Cox,
ClONO2 with TiO2 and SiO2 aerosol particles: implications for
stratospheric particle injection for climate engineering, Atmos.
Chem. Phys., 16, 15397–15412, https://doi.org/10.5194/acp-16-
15397-2016, 2016b.
Tang, Y., Carmichael, G. R., Kurata, G., Uno, I., Weber, R. J.,
Song, C. H., Guttikunda, S. K., Woo, J. H., Streets, D. G.,
Wei, C., Clarke, A. D., Huebert, B., and Anderson, T. L.: Impacts
dust of on regional tropospheric chemistry during the ACE-Asia
Experiment: a model study with observations, J. Geophys. Res.,
Ten Brink, H. M. and Speolstra, H.: The dark decay of hono in envi-
ronmental (SMOG) chambers, Atmos. Environ., 32, 247–251,
1998.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer,
S., Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F.,
Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux,
P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P.,
Isaksen, I., Iversen, I., Kloster, S., Koch, D., Kirkevåg, A., Krist-
jansson, J. E. K., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Mon-
tanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø.,
Siter, P., Takemura, T., and Tie, X.: Analysis and quantification
of the diversities of aerosol life cycles within AeroCom, Atmos.
Chem. Phys., 6, 1777–1813, https://doi.org/10.5194/acp-6-1777-
Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L.,
Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ, J., Shao, M.,
Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concen-
trations of nitryl chloride sustained in the morning: investigations
of the causes and impacts on ozone production in a polluted re-
gion of northern China, Atmos. Chem. Phys., 16, 14959–14977,
https://doi.org/10.5194/acp-16-14959-2016, 2016.
Thornton, J. and Abbatt, J. P. D.: Measurements of HO2 up-
take to aqueous aerosol: mass accommodation coefficients
and net reactive loss, J. Geophys. Res.-Atmos, 110, D08309,
J., Holloway, J., S., Dube, W. P., Wolfe, G. M., Quinn, P. K., Mid-
dlebrook, A. M., Alexander, B., and Brown, S. S.: A large atomic
chlorine source inferred from mid-continental reactive nitrogen
Tie, X., Brasseur, G., Emmons, L., Horowitz, L., and Kinnison, D.: Ef-
fecst of aerosols on tropospheric oxidants: a global model

www.atmos-chem-phys.net/17/11727/2017/
Atmos. Chem. Phys., 17, 11727–11777, 2017

M. Tang et al.: Heterogeneous reactions of mineral dust aerosol

