Supplement of

Impacts of large-scale circulation on urban ambient concentrations of gaseous elemental mercury in New York, USA

Huiting Mao et al.

Correspondence to: Huiting Mao (hmao@esf.edu)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.
**Figure S1.** 500 hPa geopotential height maps for the climatological mean of the springs of 1980-2010, and seasonal average in each spring over 2009 – 2015.

**Figure S2.** 500 hPa geopotential height maps for the climatological mean of the summers of 1980-2010, and seasonal average in each summer over 2009 – 2014.

**Figure S3.** Sea level pressure maps for the climatological mean of the springs of 1980-2010, and seasonal average in each spring over 2009 – 2015.

**Figure S4.** Sea level pressure maps for the climatological mean of the summers of 1980-2010, and seasonal average in each summer over 2009 – 2014.

**Figure S5.** Seasonal percentile mixing ratios of CO at the Bronx site in a) spring, b) summer, c) fall, and d) winter.

**Figure S6.** Wintertime percentile mixing ratios of NO₂ and SO₂ at the Bronx site.
Figure S1. 500 hPa geopotential height maps for the climatological mean of the springs of 1980-2010, and seasonal average in each spring over 2009 – 2015.
Figure S2. 500 hPa geopotential height maps for the climatological mean of the summers of 1980-2010, and seasonal average in each summer over 2009 – 2014.
March - May

Figure S3. Sea level pressure maps for the climatological mean of the springs of 1980-2010, and seasonal average in each spring over 2009 – 2015.
Figure S4. Sea level pressure maps for the climatological mean of the summers of 1980-2010, and seasonal average in each summer over 2009 – 2014.
Figure S5. Seasonal percentile mixing ratios of CO at the Bronx site in a) spring, b) summer, c) fall, and d) winter.
Figure S6. Wintertime percentile mixing ratios of NO$_2$ and SO$_2$ at the Bronx site.