Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 18 | Copyright

Special issue: The SPARC Reanalysis Intercomparison Project (S-RIP) (ACP/ESSD...

Atmos. Chem. Phys., 17, 11541-11566, 2017
https://doi.org/10.5194/acp-17-11541-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Sep 2017

Research article | 27 Sep 2017

Reanalysis comparisons of upper tropospheric–lower stratospheric jets and multiple tropopauses

Gloria L. Manney1,2, Michaela I. Hegglin3, Zachary D. Lawrence2, Krzysztof Wargan4,5, Luis F. Millán6, Michael J. Schwartz6, Michelle L. Santee6, Alyn Lambert6, Steven Pawson4, Brian W. Knosp6, Ryan A. Fuller6, and William H. Daffer6 Gloria L. Manney et al.
  • 1NorthWest Research Associates, Socorro, NM, USA
  • 2Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM, USA
  • 3Department of Meteorology, University of Reading, Reading, UK
  • 4NASA/Goddard Space Flight Center, Greenbelt, MD, USA
  • 5Science Systems and Applications Inc., Lanham, Maryland, USA
  • 6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract. The representation of upper tropospheric–lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern-Era Retrospective analysis for Research and Applications), ERA-I (ERA-Interim; the European Centre for Medium-Range Weather Forecasts, ECMWF, interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution – for example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 (the Japanese 55-year Reanalysis) a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterizations. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude Southern Hemisphere (SH) winter upper tropospheric jets and multiple tropopauses as well as in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large-scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry–climate models.

Download & links
Publications Copernicus
Special issue
Download
Short summary
The upper tropospheric–lower stratospheric (UTLS) jet stream and multiple tropopause distributions are compared among five state-of-the-art reanalyses. The reanalyses show very similar global distributions of UTLS jets, reflecting their overall high quality; slightly larger differences are seen in tropopause characteristics. Regional and seasonal differences, albeit small, may have implications for using these reanalyses for quantitative dynamical and transport studies focusing on the UTLS.
The upper tropospheric–lower stratospheric (UTLS) jet stream and multiple tropopause...
Citation
Share