Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 17, issue 18 | Copyright
Atmos. Chem. Phys., 17, 11163-11176, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 20 Sep 2017

Research article | 20 Sep 2017

Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement

Geoffrey Roest and Gunnar Schade Geoffrey Roest and Gunnar Schade
  • Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, Texas 77843-3150, USA

Abstract. The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2–C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7% with an interquartile range (IQR) of 0.5–1.3%, below the US Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 17% of methane emissions, 55% of ethane, 82% percent of propane, 90% of n-butane, and 83% of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0% (IQR of 0.7–1.6%) relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6%. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.

Download & links
Publications Copernicus
Short summary
We used atmospheric concentrations of hydrocarbons to estimate emissions from regional oil and gas activities in the Eagle Ford Shale in southern Texas to better understand their air quality impacts. While higher hydrocarbons emissions are underestimated, emissions of methane from raw natural gas sources appear lower than the US EPA's current estimate. However, we identified liquid storage tanks as an additional source of methane and as the dominant source of regional hydrocarbon emissions.
We used atmospheric concentrations of hydrocarbons to estimate emissions from regional oil and...