Articles | Volume 17, issue 16
https://doi.org/10.5194/acp-17-10109-2017
https://doi.org/10.5194/acp-17-10109-2017
Research article
 | 
29 Aug 2017
Research article |  | 29 Aug 2017

Projected changes in haze pollution potential in China: an ensemble of regional climate model simulations

Zhenyu Han, Botao Zhou, Ying Xu, Jia Wu, and Ying Shi

Related authors

Modeling of severe persistent droughts over eastern China during the last millennium
Y. Peng, C. Shen, H. Cheng, and Y. Xu
Clim. Past, 10, 1079–1091, https://doi.org/10.5194/cp-10-1079-2014,https://doi.org/10.5194/cp-10-1079-2014, 2014

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol–meteorology feedback diminishes the transboundary transport of black carbon into the Tibetan Plateau
Yuling Hu, Haipeng Yu, Shichang Kang, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
Atmos. Chem. Phys., 24, 85–107, https://doi.org/10.5194/acp-24-85-2024,https://doi.org/10.5194/acp-24-85-2024, 2024
Short summary
Associations of interannual variation in summer tropospheric ozone with the Western Pacific Subtropical High in China from 1999 to 2017
Xiaodong Zhang, Ruiyu Zhugu, Xiaohu Jian, Xinrui Liu, Kaijie Chen, Shu Tao, Junfeng Liu, Hong Gao, Tao Huang, and Jianmin Ma
Atmos. Chem. Phys., 23, 15629–15642, https://doi.org/10.5194/acp-23-15629-2023,https://doi.org/10.5194/acp-23-15629-2023, 2023
Short summary
Climate intervention using marine cloud brightening (MCB) compared with stratospheric aerosol injection (SAI) in the UKESM1 climate model
Jim M. Haywood, Andy Jones, Anthony C. Jones, Paul Halloran, and Philip J. Rasch
Atmos. Chem. Phys., 23, 15305–15324, https://doi.org/10.5194/acp-23-15305-2023,https://doi.org/10.5194/acp-23-15305-2023, 2023
Short summary
Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: Strong surfactants
Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 23, 15149–15164, https://doi.org/10.5194/acp-23-15149-2023,https://doi.org/10.5194/acp-23-15149-2023, 2023
Short summary
Increased importance of aerosol–cloud interactions for surface PM2.5 pollution relative to aerosol–radiation interactions in China with the anthropogenic emission reductions
Da Gao, Bin Zhao, Shuxiao Wang, Yuan Wang, Brian Gaudet, Yun Zhu, Xiaochun Wang, Jiewen Shen, Shengyue Li, Yicong He, Dejia Yin, and Zhaoxin Dong
Atmos. Chem. Phys., 23, 14359–14373, https://doi.org/10.5194/acp-23-14359-2023,https://doi.org/10.5194/acp-23-14359-2023, 2023
Short summary

Cited articles

Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions conducive to Beijing severe haze more frequent under climate change, Nature Climate Change, 7, 257–262, 2017.
Chen, H. P. and Wang, H. J.: Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012, J. Geophys. Res.-Atmos., 120, 5895–5909, https://doi.org/10.1002/2015JD023225, 2015.
Ding, Y. H. and Liu, Y. J.: Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity, Sci. China Earth Sci., 57, 36–46, 2014.
ECMWF: ERA-Interim data, available at: http://apps.ecmwf.int/datasets/data/interim-full-daily/, last access: May 2017.
Emanuel, K. A.: A scheme for representing cumulus convection in large-scale models, J. Atmos. Sci., 48, 2313–2329, 1991.
Download
Short summary
Based on the future projection of high-resolution regional climate simulations under the medium-low radiative forcing scenario, the haze pollution potential tends to increase almost over the whole of China except central China, and this increase would be generally aggravated over time. There would be a higher probability of pollution risk over Beijing–Tianjin–Hebei and Yangtze River Delta in winter, over Pearl River Delta in spring and summer, and over Northeast China throughout the whole year.
Altmetrics
Final-revised paper
Preprint