Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 16, 9629-9653, 2016
https://doi.org/10.5194/acp-16-9629-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
02 Aug 2016
Variation in global chemical composition of PM2.5: emerging results from SPARTAN
Graydon Snider1, Crystal L. Weagle2, Kalaivani K. Murdymootoo1, Amanda Ring1, Yvonne Ritchie1, Emily Stone1, Ainsley Walsh1, Clement Akoshile3, Nguyen Xuan Anh4, Rajasekhar Balasubramanian5, Jeff Brook6, Fatimah D. Qonitan7, Jinlu Dong8, Derek Griffith9, Kebin He8, Brent N. Holben10, Ralph Kahn10, Nofel Lagrosas11, Puji Lestari7, Zongwei Ma12, Amit Misra13, Leslie K. Norford14, Eduardo J. Quel15, Abdus Salam16, Bret Schichtel17, Lior Segev18, Sachchida Tripathi13, Chien Wang19, Chao Yu20, Qiang Zhang8, Yuxuan Zhang8, Michael Brauer21, Aaron Cohen22, Mark D. Gibson23, Yang Liu20, J. Vanderlei Martins24, Yinon Rudich18, and Randall V. Martin1,2,25 1Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
2Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
3Department of Physics, University of Ilorin, Ilorin, Nigeria
4Institute of Geophysics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
5Department of Civil and Environmental Engineering, National University of Singapore, Singapore
6Department of Public Health Sciences, University of Toronto, Toronto, Ontario, Canada
7Faculty of Civil and Environmental Engineering, ITB, JL. Ganesha No.10, Bandung, Indonesia
8Center for Earth System Science, Tsinghua University, Beijing, China
9Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
10Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA
11Manila Observatory, Ateneo de Manila University, Quezon City, Philippines
12School of Environment, Nanjing University, Nanjing, China
13Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
14Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA, USA
15UNIDEF (CITEDEF-CONICET) Juan B. de la Salle 4397 – B1603ALO Villa Martelli, Buenos Aires, Argentina
16Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
17Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
18Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
19Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA, USA
20Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, USA
21School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
22Health Effects Institute, 101 Federal Street Suite 500, Boston, MA, USA
23Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
24Department of Physics and Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MA, USA
25Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
Abstract. The Surface PARTiculate mAtter Network (SPARTAN) is a long-term project that includes characterization of chemical and physical attributes of aerosols from filter samples collected worldwide. This paper discusses the ongoing efforts of SPARTAN to define and quantify major ions and trace metals found in fine particulate matter (PM2.5). Our methods infer the spatial and temporal variability of PM2.5 in a cost-effective manner. Gravimetrically weighed filters represent multi-day averages of PM2.5, with a collocated nephelometer sampling air continuously. SPARTAN instruments are paired with AErosol RObotic NETwork (AERONET) sun photometers to better understand the relationship between ground-level PM2.5 and columnar aerosol optical depth (AOD).

We have examined the chemical composition of PM2.5 at 12 globally dispersed, densely populated urban locations and a site at Mammoth Cave (US) National Park used as a background comparison. So far, each SPARTAN location has been active between the years 2013 and 2016 over periods of 2–26 months, with an average period of 12 months per site. These sites have collectively gathered over 10 years of quality aerosol data. The major PM2.5 constituents across all sites (relative contribution ± SD) are ammoniated sulfate (20 % ± 11 %), crustal material (13.4 % ± 9.9 %), equivalent black carbon (11.9 % ± 8.4 %), ammonium nitrate (4.7 % ± 3.0 %), sea salt (2.3 % ± 1.6 %), trace element oxides (1.0 % ± 1.1 %), water (7.2 % ± 3.3 %) at 35 % RH, and residual matter (40 % ± 24 %).

Analysis of filter samples reveals that several PM2.5 chemical components varied by more than an order of magnitude between sites. Ammoniated sulfate ranges from 1.1 µg m−3 (Buenos Aires, Argentina) to 17 µg m−3 (Kanpur, India in the dry season). Ammonium nitrate ranged from 0.2 µg m−3 (Mammoth Cave, in summer) to 6.8  µg m−3 (Kanpur, dry season). Equivalent black carbon ranged from 0.7 µg m−3 (Mammoth Cave) to over 8 µg m−3 (Dhaka, Bangladesh and Kanpur, India). Comparison of SPARTAN vs. coincident measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network at Mammoth Cave yielded a high degree of consistency for daily PM2.5 (r2 = 0.76, slope  =  1.12), daily sulfate (r2 = 0.86, slope  =  1.03), and mean fractions of all major PM2.5 components (within 6 %). Major ions generally agree well with previous studies at the same urban locations (e.g. sulfate fractions agree within 4 % for 8 out of 11 collocation comparisons). Enhanced anthropogenic dust fractions in large urban areas (e.g. Singapore, Kanpur, Hanoi, and Dhaka) are apparent from high Zn : Al ratios.

The expected water contribution to aerosols is calculated via the hygroscopicity parameter κv for each filter. Mean aggregate values ranged from 0.15 (Ilorin) to 0.28 (Rehovot). The all-site parameter mean is 0.20 ± 0.04. Chemical composition and water retention in each filter measurement allows inference of hourly PM2.5 at 35 % relative humidity by merging with nephelometer measurements. These hourly PM2.5 estimates compare favourably with a beta attenuation monitor (MetOne) at the nearby US embassy in Beijing, with a coefficient of variation r2 =  0.67 (n =  3167), compared to r2 = 0.62 when κv was not considered. SPARTAN continues to provide an open-access database of PM2.5 compositional filter information and hourly mass collected from a global federation of instruments.


Citation: Snider, G., Weagle, C. L., Murdymootoo, K. K., Ring, A., Ritchie, Y., Stone, E., Walsh, A., Akoshile, C., Anh, N. X., Balasubramanian, R., Brook, J., Qonitan, F. D., Dong, J., Griffith, D., He, K., Holben, B. N., Kahn, R., Lagrosas, N., Lestari, P., Ma, Z., Misra, A., Norford, L. K., Quel, E. J., Salam, A., Schichtel, B., Segev, L., Tripathi, S., Wang, C., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., Liu, Y., Martins, J. V., Rudich, Y., and Martin, R. V.: Variation in global chemical composition of PM2.5: emerging results from SPARTAN, Atmos. Chem. Phys., 16, 9629-9653, https://doi.org/10.5194/acp-16-9629-2016, 2016.
Publications Copernicus
Download
Short summary
We examine the chemical composition of fine particulate matter (PM2.5) collected on filters at traditionally undersampled, globally dispersed urban locations. Several PM2.5 chemical components (e.g. ammonium sulfate, ammonium nitrate, and black carbon) vary by more than an order of magnitude between sites while aerosol hygroscopicity varies by a factor of 2. Enhanced anthropogenic dust fractions in large urban areas are apparent from high Zn : Al ratios.
We examine the chemical composition of fine particulate matter (PM2.5) collected on filters at...
Share