Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 2
Atmos. Chem. Phys., 16, 953–970, 2016
https://doi.org/10.5194/acp-16-953-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 953–970, 2016
https://doi.org/10.5194/acp-16-953-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Jan 2016

Research article | 26 Jan 2016

Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

Y. Mancilla1, A. Mendoza1, M. P. Fraser2, and P. Herckes3 Y. Mancilla et al.
  • 1School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, Mexico
  • 2School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
  • 3School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA

Abstract. Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey metropolitan area (MMA) during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs) and hopanes were less abundant. The carbon preference index (0.7–2.6) for n-alkanes indicates a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAHs showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAHs and elemental carbon were correlated (r2 =  0.39–0.70) across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAHs. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat-cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass burning events. Finally, source attribution results obtained using the CMB (chemical mass balance) model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5, followed by meat-cooking operations with 31 % The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is only the second study to explore the organic composition and source apportionment of fine organic aerosol based on molecular markers in Mexico and the first for the MMA. Particularly molecular marker were quantified by solvent extraction with dichloromethane, derivatization, and gas chromatography with mass spectrometry (GC/MS).

Publications Copernicus
Download
Short summary
Chemical characterization of fine aerosol was conducted due to air pollution by fine particles in the last decade. The diagnostic ratios and CMB receptor model based on organic markers showed that gasoline- and diesel-powered vehicles are the main emission sources (CMB = 64 %) of this class of organic compounds in PM2.5. Other pyrogenic sources as contributors to fine aerosols. Fine particles are related to human health impacts. In addition, these results can be useful for policy making.
Chemical characterization of fine aerosol was conducted due to air pollution by fine particles...
Citation