Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 2
Atmos. Chem. Phys., 16, 933–952, 2016
https://doi.org/10.5194/acp-16-933-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 933–952, 2016
https://doi.org/10.5194/acp-16-933-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Jan 2016

Research article | 26 Jan 2016

Investigation of the adiabatic assumption for estimating cloud micro- and macrophysical properties from satellite and ground observations

D. Merk et al.

Related authors

Detection of convective initiation using Meteosat SEVIRI: implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM
D. Merk and T. Zinner
Atmos. Meas. Tech., 6, 1903–1918, https://doi.org/10.5194/amt-6-1903-2013,https://doi.org/10.5194/amt-6-1903-2013, 2013

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020,https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Linking large-scale circulation patterns to low-cloud properties
Timothy W. Juliano and Zachary J. Lebo
Atmos. Chem. Phys., 20, 7125–7138, https://doi.org/10.5194/acp-20-7125-2020,https://doi.org/10.5194/acp-20-7125-2020, 2020
Short summary
Quantifying cloud adjustments and the radiative forcing due to aerosol–cloud interactions in satellite observations of warm marine clouds
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 20, 6225–6241, https://doi.org/10.5194/acp-20-6225-2020,https://doi.org/10.5194/acp-20-6225-2020, 2020
Short summary
Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event
Elena Ruiz-Donoso, André Ehrlich, Michael Schäfer, Evelyn Jäkel, Vera Schemann, Susanne Crewell, Mario Mech, Birte Solveig Kulla, Leif-Leonard Kliesch, Roland Neuber, and Manfred Wendisch
Atmos. Chem. Phys., 20, 5487–5511, https://doi.org/10.5194/acp-20-5487-2020,https://doi.org/10.5194/acp-20-5487-2020, 2020
Short summary
The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, and Christoph Ritter
Atmos. Chem. Phys., 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020,https://doi.org/10.5194/acp-20-5157-2020, 2020
Short summary

Cited articles

Ackerman, A. S., Toon, O. B., Taylor, J. P., Johnson, D. W., Hobbs, P. V., and Ferek, R. J.: Effects of Aerosols on Cloud Albedo: Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks, J. Atmos. Sci., 57, 2684–2695, https://doi.org/10.1175/1520-0469(2000)057<2684:EOAOCA>2.0.CO;2, 2000.
Ahmad, I., Mielonen, T., Grosvenor, D., Portin, H., Arola, A., Mikkonen, S., Kühn, T., Leskinen, A., Juotsensaari, J., Komppula, M., Lehtinen, K., Laaksonen, A., and Romakkaniemi, S.: Long-term measurements of cloud droplet concentrations and aerosol-cloud interactions in continental boundary layer clouds, Tellus B, 65, 20138, https://doi.org/10.3402/tellusb.v65i0.20138, 2013.
Albrecht, B. A., Fairall, C. W., Thomson, D. W., White, A. B., Snider, J. B., and Schubert, W. H.: Surface-based remote sensing of the observed and the Adiabatic liquid water content of stratocumulus clouds, Geophys. Res. Lett., 17, 89–92, https://doi.org/10.1029/GL017i001p00089, 1990.
Baker, M. B., Blyth, A. M., Carruthers, D. J., Choularton, T. W., Fullarton, G., Gay, M. J., Latham, J., Mill, C. S., Smith, M. H., Stromberg, I. M., Caughey, S. J., and Conway, B. J.: Field studies of the effect of entrainment upon the structure of clouds at Great Dun Fell, Q. J. Roy. Meteor. Soc., 108, 899–916, https://doi.org/10.1002/qj.49710845810, 1982.
Battan, L. J.: Radar observation of the atmosphere, University of Chicago Press, 1973.
Publications Copernicus
Download
Short summary
A 2-year data set is analyzed to evaluate the consistency and limitations of current ground-based and satellite-retrieved cloud property data sets. We demonstrate that neither the assumption of a completely adiabatic cloud nor the assumption of a constant sub-adiabatic factor is fulfilled. As cloud adiabaticity is required to estimate the cloud droplet number concentration, but is not available from passive satellite observations, we need an independent method to estimate the adiabatic factor.
A 2-year data set is analyzed to evaluate the consistency and limitations of current...
Citation