Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 14
Atmos. Chem. Phys., 16, 8873–8898, 2016
https://doi.org/10.5194/acp-16-8873-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The Boundary-Layer Late Afternoon and Sunset Turbulence (BLLAST)...

Atmos. Chem. Phys., 16, 8873–8898, 2016
https://doi.org/10.5194/acp-16-8873-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Jul 2016

Research article | 19 Jul 2016

Turbulence kinetic energy budget during the afternoon transition – Part 2: A simple TKE model

Erik Nilsson et al.

Related authors

Nocturnal boundary layer turbulence regimes analysis during the BLLAST campaign
Jesús Yus-Díez, Mireia Udina, Maria Rosa Soler, Marie Lothon, Erik Nilsson, Joan Bech, and Jielun Sun
Atmos. Chem. Phys., 19, 9495–9514, https://doi.org/10.5194/acp-19-9495-2019,https://doi.org/10.5194/acp-19-9495-2019, 2019
Short summary
Boundary-layer turbulent processes and mesoscale variability represented by numerical weather prediction models during the BLLAST campaign
Fleur Couvreux, Eric Bazile, Guylaine Canut, Yann Seity, Marie Lothon, Fabienne Lohou, Françoise Guichard, and Erik Nilsson
Atmos. Chem. Phys., 16, 8983–9002, https://doi.org/10.5194/acp-16-8983-2016,https://doi.org/10.5194/acp-16-8983-2016, 2016
Short summary
Turbulence kinetic energy budget during the afternoon transition – Part 1: Observed surface TKE budget and boundary layer description for 10 intensive observation period days
Erik Nilsson, Fabienne Lohou, Marie Lothon, Eric Pardyjak, Larry Mahrt, and Clara Darbieu
Atmos. Chem. Phys., 16, 8849–8872, https://doi.org/10.5194/acp-16-8849-2016,https://doi.org/10.5194/acp-16-8849-2016, 2016
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Surface processes in the 7 November 2014 medicane from air–sea coupled high-resolution numerical modelling
Marie-Noëlle Bouin and Cindy Lebeaupin Brossier
Atmos. Chem. Phys., 20, 6861–6881, https://doi.org/10.5194/acp-20-6861-2020,https://doi.org/10.5194/acp-20-6861-2020, 2020
Short summary
Hadley cell expansion in CMIP6 models
Kevin M. Grise and Sean M. Davis
Atmos. Chem. Phys., 20, 5249–5268, https://doi.org/10.5194/acp-20-5249-2020,https://doi.org/10.5194/acp-20-5249-2020, 2020
Short summary
Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline
Yufei Zou, Yuhang Wang, Zuowei Xie, Hailong Wang, and Philip J. Rasch
Atmos. Chem. Phys., 20, 4999–5017, https://doi.org/10.5194/acp-20-4999-2020,https://doi.org/10.5194/acp-20-4999-2020, 2020
Short summary
Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020,https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Characterization of the air–sea exchange mechanisms during a Mediterranean heavy precipitation event using realistic sea state modelling
César Sauvage, Cindy Lebeaupin Brossier, Marie-Noëlle Bouin, and Véronique Ducrocq
Atmos. Chem. Phys., 20, 1675–1699, https://doi.org/10.5194/acp-20-1675-2020,https://doi.org/10.5194/acp-20-1675-2020, 2020
Short summary

Cited articles

Angevine, W., Baltink, H., and Bosveld, F.: Observations Of The Morning Transition Of The Convective Boundary Layer, Bound.-Lay. Meteorol., 101, 209–227, 2001.
Basu, S., Vinuesa, J., and Swift, A.: Dynamic LES modeling of a diurnal cycle, J. Appl. Meteorol. Climatol., 47, 1156–1174, 2008.
Beare, R. J., Edwards, J. M., and Lapworth, A.: Simulation of the observed evening transition and nocturnal boundary layers: large-eddy simulation, Q. J. Roy. Meteor. Soc., 132, 81–99, 2006.
Blay-Carreras, E., Pino, D., Vilà-Guerau de Arellano, J., van de Boer, A., De Coster, O., Darbieu, C., Hartogensis, O., Lohou, F., Lothon, M., and Pietersen, H.: Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer, Atmos. Chem. Phys., 14, 4515–4530, https://doi.org/10.5194/acp-14-4515-2014, 2014.
BLLAST: Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) website, available at: http://bllast.sedoo.fr/database/ (last access: 1 July 2016), 2015.
Publications Copernicus
Short summary
A new simple model for turbulence kinetic energy (TKE) and its budget is presented for the sheared convective atmospheric boundary layer. It is used to study effects of buoyancy and shear on TKE evolution during the afternoon transition, especially near the surface. We also find a region of weak turbulence during unstable afternoon conditions below the inversion top, which we refer to as a "pre-residual layer".
A new simple model for turbulence kinetic energy (TKE) and its budget is presented for the...
Citation