Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 1
Atmos. Chem. Phys., 16, 85–99, 2016
https://doi.org/10.5194/acp-16-85-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 85–99, 2016
https://doi.org/10.5194/acp-16-85-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Jan 2016

Research article | 15 Jan 2016

Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

A. Ito1 and Z. Shi2 A. Ito and Z. Shi
  • 1Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, Kanagawa, Japan
  • 2School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

Abstract. Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this study, for the first time, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. Firstly, we determined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate). Then, by using acidity as a master variable, we constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1–2 orders of magnitude lower Fe solubility in northern-African- than combustion-influenced aerosols). The model results show a positive relationship between Fe solubility and water-soluble organic carbon (WSOC)/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05–0.07 Tg Fe yr−1 in the preindustrial era to 0.11–0.12 Tg Fe yr−1 in the present day, due to air pollution. Over the high-nitrate, low-chlorophyll (HNLC) regions of the ocean, the modeled Fe solubility remains low for mineral dust (< 1 %) in a base simulation but is substantially enhanced in a sensitivity simulation, which permits the Fe dissolution for mineral aerosols in the presence of excess oxalate under low acidity during daytime. Our model results suggest that human activities contribute to about half of the soluble Fe supply to a significant portion of the oceans in the Northern Hemisphere, while their contribution to oceans in high latitudes remains uncertain due to limited understanding of Fe source and its dissolution under pristine conditions.

Publications Copernicus
Download
Short summary
A new Fe dissolution scheme is developed and is applied to an atmospheric chemistry transport model to estimate anthropogenic soluble Fe deposition. Our improved model successfully captured an inverse relationship of Fe solubility and total Fe loading. Our model estimated the low end of Fe solubility compared to the previous studies. Our model results suggest that human activities contribute to about half of bioavailable Fe supply to significant portions of the oceans in the Northern Hemisphere.
A new Fe dissolution scheme is developed and is applied to an atmospheric chemistry transport...
Citation