Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 2
Atmos. Chem. Phys., 16, 827–841, 2016
https://doi.org/10.5194/acp-16-827-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 827–841, 2016
https://doi.org/10.5194/acp-16-827-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Jan 2016

Research article | 25 Jan 2016

Observational evidence of temperature trends at two levels in the surface layer

X. Lin et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (22 Dec 2015)  Author's response    Manuscript
ED: Publish as is (22 Dec 2015) by Jianping Huang
Publications Copernicus
Download
Short summary
We found that the near-surface lapse rate has significantly decreased with a trend of −0.18 ± 0.03 °C (10 m)−1 per decade. We also showed that the 9 m height temperatures increased faster than temperatures at the 1.5 m screen level and/or conditions at the 1.5 m height cooled faster than at the 9 m height.
We found that the near-surface lapse rate has significantly decreased with a trend of −0.18 ±...
Citation