Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 12 | Copyright
Atmos. Chem. Phys., 16, 7867-7878, 2016
https://doi.org/10.5194/acp-16-7867-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Jun 2016

Research article | 27 Jun 2016

Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide

Christian Frankenberg1,2, Susan S. Kulawik3, Steven C. Wofsy4, Frédéric Chevallier5, Bruce Daube4, Eric A. Kort6, Christopher O'Dell7, Edward T. Olsen2, and Gregory Osterman2 Christian Frankenberg et al.
  • 1Division of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
  • 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
  • 3Bay Area Environmental Research Institute, Sonoma, CA 95476, USA
  • 4Harvard University, Cambridge, MA, USA
  • 5Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif sur Yvette, France
  • 6Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
  • 7Cooperative Institute for Research in the Atmosphere (CIRA), Fort Collins, CO, USA

Abstract. In recent years, space-borne observations of atmospheric carbon dioxide (CO2) have been increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column-averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network (TCCON). Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) flights from 01/2009 through 09/2011 to validate CO2 measurements from satellites (Greenhouse Gases Observing Satellite – GOSAT, Thermal Emission Sounder – TES, Atmospheric Infrared Sounder – AIRS) and atmospheric inversion models (CarbonTracker CT2013B, Monitoring Atmospheric Composition and Climate (MACC) v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, in particular at 300hPa during the peaks of either carbon uptake or release. These deviations can be up to 4ppm and hint at misrepresentation of vertical transport.

Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06ppm, and a standard deviation σ of 0.45ppm. TES exhibits an r2 of 0.75, μ of 0.34ppm, and σ of 1.13ppm. For AIRS, we find an r2 of 0.37, μ of 1.11ppm, and σ of 1.46ppm, with latitude-dependent biases. For these comparisons at least 6, 20, and 50 atmospheric soundings have been averaged for GOSAT, TES, and AIRS, respectively. Overall, we find that GOSAT soundings over the remote Pacific Ocean mostly meet the stringent accuracy requirements of about 0.5ppm for space-based CO2 observations.

Download & links
Publications Copernicus
Download
Short summary
We use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1).
We use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009...
Citation
Share