Articles | Volume 16, issue 2
https://doi.org/10.5194/acp-16-777-2016
https://doi.org/10.5194/acp-16-777-2016
Research article
 | 
25 Jan 2016
Research article |  | 25 Jan 2016

Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

A Vara-Vela, M. F. Andrade, P. Kumar, R. Y. Ynoue, and A. G. Muñoz

Related authors

Aerosols from anthropogenic and biogenic sources and their interactions – modeling aerosol formation, optical properties, and impacts over the central Amazon basin
Janaína P. Nascimento, Megan M. Bela, Bruno B. Meller, Alessandro L. Banducci, Luciana V. Rizzo, Angel Liduvino Vara-Vela, Henrique M. J. Barbosa, Helber Gomes, Sameh A. A. Rafee, Marco A. Franco, Samara Carbone, Glauber G. Cirino, Rodrigo A. F. Souza, Stuart A. McKeen, and Paulo Artaxo
Atmos. Chem. Phys., 21, 6755–6779, https://doi.org/10.5194/acp-21-6755-2021,https://doi.org/10.5194/acp-21-6755-2021, 2021

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol–meteorology feedback diminishes the transboundary transport of black carbon into the Tibetan Plateau
Yuling Hu, Haipeng Yu, Shichang Kang, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
Atmos. Chem. Phys., 24, 85–107, https://doi.org/10.5194/acp-24-85-2024,https://doi.org/10.5194/acp-24-85-2024, 2024
Short summary
Associations of interannual variation in summer tropospheric ozone with the Western Pacific Subtropical High in China from 1999 to 2017
Xiaodong Zhang, Ruiyu Zhugu, Xiaohu Jian, Xinrui Liu, Kaijie Chen, Shu Tao, Junfeng Liu, Hong Gao, Tao Huang, and Jianmin Ma
Atmos. Chem. Phys., 23, 15629–15642, https://doi.org/10.5194/acp-23-15629-2023,https://doi.org/10.5194/acp-23-15629-2023, 2023
Short summary
Climate intervention using marine cloud brightening (MCB) compared with stratospheric aerosol injection (SAI) in the UKESM1 climate model
Jim M. Haywood, Andy Jones, Anthony C. Jones, Paul Halloran, and Philip J. Rasch
Atmos. Chem. Phys., 23, 15305–15324, https://doi.org/10.5194/acp-23-15305-2023,https://doi.org/10.5194/acp-23-15305-2023, 2023
Short summary
Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: Strong surfactants
Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 23, 15149–15164, https://doi.org/10.5194/acp-23-15149-2023,https://doi.org/10.5194/acp-23-15149-2023, 2023
Short summary
Increased importance of aerosol–cloud interactions for surface PM2.5 pollution relative to aerosol–radiation interactions in China with the anthropogenic emission reductions
Da Gao, Bin Zhao, Shuxiao Wang, Yuan Wang, Brian Gaudet, Yun Zhu, Xiaochun Wang, Jiewen Shen, Shengyue Li, Yicong He, Dejia Yin, and Zhaoxin Dong
Atmos. Chem. Phys., 23, 14359–14373, https://doi.org/10.5194/acp-23-14359-2023,https://doi.org/10.5194/acp-23-14359-2023, 2023
Short summary

Cited articles

Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe: development and first applications, Atmos. Environ., 32, 2981–2999, 1998.
Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A. M., de Gouw, J. A., Meagher, J., Hsie, E. Y., Edgerton, E., Shaw, S., and Trainer, M.: A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006, J. Geophys. Res., 117, D06301, https://doi.org/10.1029/2011JD016831, 2012.
Albuquerque, T. T. A., Andrade, M. F., and Ynoue, R. Y.: Characterization of atmospheric aerosols in the city of Sao Paulo, Brazil: comparisons between polluted and unpolluted periods, Water Air Soil Poll., 195, 201–213, 2011.
Anderson, L.: Ethanol fuel use in Brazil: air quality impacts, Energy Environ. Sci., 2, 1015–1037, 2009.
Andrade, M. F., Fornaro, A., Miranda, R. M., Kerr, A., Oyama, B., Andre, P. A., and Saldiva, P.: Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities, Air Qual. Atmos. Health, 5, 79–88, 2012.
Download
Short summary
This study provides a first step to understand the impact of vehicular emissions on the formation of secondary particles as well as the feedback between these particles and meteorology in the Sao Paulo Metropolitan Area (SPMA). Among the main research findings are: - The emissions of primary gases from vehicles led to a production between 20 and 30 % due to new particles formation in relation to the total mass concentration PM2.5 in the downtown SPMA.
Altmetrics
Final-revised paper
Preprint