Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 12
Atmos. Chem. Phys., 16, 7695–7707, 2016
https://doi.org/10.5194/acp-16-7695-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Marine trace gases and aerosols over tropical oceans (AMT/ACP...

Atmos. Chem. Phys., 16, 7695–7707, 2016
https://doi.org/10.5194/acp-16-7695-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Jun 2016

Research article | 23 Jun 2016

Contribution of dissolved organic matter to submicron water-soluble organic aerosols in the marine boundary layer over the eastern equatorial Pacific

Yuzo Miyazaki et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Yuzo Miyazaki on behalf of the Authors (26 May 2016)  Author's response    Manuscript
ED: Publish as is (05 Jun 2016) by Alexander Pszenny
Publications Copernicus
Download
Short summary
We conducted a WSOC-specific 13C analysis of submicron marine aerosols over the eastern equatorial Pacific for the first time. The analysis of 13C combined with monosaccharides provides evidence of a significant contribution of marine dissolved organic carbon (DOC) to submicron particles in the MBL regardless of the oceanic area. The study demonstrates that DOC is closely correlated with the submicron WSOC and implies that it may characterize background OA in the MBL over the study region.
We conducted a WSOC-specific 13C analysis of submicron marine aerosols over the eastern...
Citation