Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 12
Atmos. Chem. Phys., 16, 7605–7621, 2016
https://doi.org/10.5194/acp-16-7605-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 7605–7621, 2016
https://doi.org/10.5194/acp-16-7605-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Jun 2016

Research article | 22 Jun 2016

Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements

Erika Kienast-Sjögren et al.

Viewed

Total article views: 1,431 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
839 561 31 1,431 41 35
  • HTML: 839
  • PDF: 561
  • XML: 31
  • Total: 1,431
  • BibTeX: 41
  • EndNote: 35
Views and downloads (calculated since 02 Feb 2016)
Cumulative views and downloads (calculated since 02 Feb 2016)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 15 Jul 2020
Publications Copernicus
Download
Short summary
We present a climatology of mid-latitude cirrus cloud properties based on 13 000 hours of automatically analyzed lidar measurements at three different sites. Jungfraujoch, situated at 3580 m a.s.l., is found to be ideal to measure high and optically thin cirrus. We use our retrieved optical properties together with a radiation model and estimate the radiative forcing by mid-latitude cirrus. All cirrus clouds detected here have a positive net radiative effect.
We present a climatology of mid-latitude cirrus cloud properties based on 13 000 hours of...
Citation